ato

The transcriptional regulator IscR integrates host-derived nitrosative stress and iron starvation in activation of the vvhBA operon in Vibrio vulnificus [Gene Regulation]

For successful infection of their hosts, pathogenic bacteria recognize host-derived signals that induce the expression of virulence factors in a spatiotemporal manner. The fulminating food-borne pathogen Vibrio vulnificus produces a cytolysin/hemolysin protein encoded by the vvhBA operon, which is a virulence factor preferentially expressed upon exposure to murine blood and macrophages. The Fe-S cluster containing transcriptional regulator IscR activates the vvhBA operon in response to nitrosative stress and iron starvation, during which the cellular IscR protein level increases. Here, electrophoretic mobility shift and DNase I protection assays revealed that IscR directly binds downstream of the vvhBA promoter PvvhBA, which is unusual for a positive regulator. We found that in addition to IscR, the transcriptional regulator HlyU activates vvhBA transcription by directly binding upstream of PvvhBA, whereas the histone-like nucleoid-structuring protein (H-NS) represses vvhBA by extensively binding to both downstream and upstream regions of its promoter. Of note, the binding sites of IscR and HlyU overlapped with those of H-NS. We further substantiated that IscR and HlyU outcompete H-NS for binding to the PvvhBA regulatory region, resulting in the release of H-NS repression and vvhBA induction. We conclude that concurrent antirepression by IscR and HlyU at regions both downstream and upstream of PvvhBA provides V. vulnificus with the means of integrating host-derived signal(s) such as nitrosative stress and iron starvation for precise regulation of vvhBA transcription, thereby enabling successful host infection.




ato

Inter-{alpha}-inhibitor heavy chain-1 has an integrin-like 3D structure mediating immune regulatory activities and matrix stabilization during ovulation [Glycobiology and Extracellular Matrices]

Inter-α-inhibitor is a proteoglycan essential for mammalian reproduction and also plays a less well-characterized role in inflammation. It comprises two homologous “heavy chains” (HC1 and HC2) covalently attached to chondroitin sulfate on the bikunin core protein. Before ovulation, HCs are transferred onto the polysaccharide hyaluronan (HA) to form covalent HC·HA complexes, thereby stabilizing an extracellular matrix around the oocyte required for fertilization. Additionally, such complexes form during inflammatory processes and mediate leukocyte adhesion in the synovial fluids of arthritis patients and protect against sepsis. Here using X-ray crystallography, we show that human HC1 has a structure similar to integrin β-chains, with a von Willebrand factor A domain containing a functional metal ion-dependent adhesion site (MIDAS) and an associated hybrid domain. A comparison of the WT protein and a variant with an impaired MIDAS (but otherwise structurally identical) by small-angle X-ray scattering and analytical ultracentrifugation revealed that HC1 self-associates in a cation-dependent manner, providing a mechanism for HC·HA cross-linking and matrix stabilization. Surprisingly, unlike integrins, HC1 interacted with RGD-containing ligands, such as fibronectin, vitronectin, and the latency-associated peptides of transforming growth factor β, in a MIDAS/cation-independent manner. However, HC1 utilizes its MIDAS motif to bind to and inhibit the cleavage of complement C3, and small-angle X-ray scattering–based modeling indicates that this occurs through the inhibition of the alternative pathway C3 convertase. These findings provide detailed structural and functional insights into HC1 as a regulator of innate immunity and further elucidate the role of HC·HA complexes in inflammation and ovulation.




ato

The heme-regulatory motifs of heme oxygenase-2 contribute to the transfer of heme to the catalytic site for degradation [Protein Structure and Folding]

Heme-regulatory motifs (HRMs) are present in many proteins that are involved in diverse biological functions. The C-terminal tail region of human heme oxygenase-2 (HO2) contains two HRMs whose cysteine residues form a disulfide bond; when reduced, these cysteines are available to bind Fe3+-heme. Heme binding to the HRMs occurs independently of the HO2 catalytic active site in the core of the protein, where heme binds with high affinity and is degraded to biliverdin. Here, we describe the reversible, protein-mediated transfer of heme between the HRMs and the HO2 core. Using hydrogen-deuterium exchange (HDX)-MS to monitor the dynamics of HO2 with and without Fe3+-heme bound to the HRMs and to the core, we detected conformational changes in the catalytic core only in one state of the catalytic cycle—when Fe3+-heme is bound to the HRMs and the core is in the apo state. These conformational changes were consistent with transfer of heme between binding sites. Indeed, we observed that HRM-bound Fe3+-heme is transferred to the apo-core either upon independent expression of the core and of a construct spanning the HRM-containing tail or after a single turnover of heme at the core. Moreover, we observed transfer of heme from the core to the HRMs and equilibration of heme between the core and HRMs. We therefore propose an Fe3+-heme transfer model in which HRM-bound heme is readily transferred to the catalytic site for degradation to facilitate turnover but can also equilibrate between the sites to maintain heme homeostasis.




ato

Correction: A dual druggable genome-wide siRNA and compound library screening approach identifies modulators of parkin recruitment to mitochondria. [Additions and Corrections]

VOLUME 295 (2020) PAGES 3285–3300An incorrect graph was used in Fig. 5C. This error has now been corrected. Additionally, some of the statistics reported in the legend and text referring to Fig. 5C were incorrect. The F statistics for Fig. 5C should state Fken(3,16) = 7.454, p < 0.01; FCCCP(1,16) = 102.9, p < 0.0001; Finteraction(3,16) = 7.480, p < 0.01. This correction does not affect the results or conclusions of this work.jbc;295/17/5835/F5F1F5Figure 5C.




ato

Correction: Metabolic fingerprinting for diagnosis of fibromyalgia and other rheumatologic disorders. [Additions and Corrections]

VOLUME 294 (2019) PAGES 2555–2568Due to publisher error, “150 l/mm” was changed to “150 liters/mm” in the second paragraph of the “Vibrational spectroscopy of samples” section under “Experimental Procedures.” The correct phrase should be “150 l/mm.”




ato

Structural basis of cell-surface signaling by a conserved sigma regulator in Gram-negative bacteria [Molecular Biophysics]

Cell-surface signaling (CSS) in Gram-negative bacteria involves highly conserved regulatory pathways that optimize gene expression by transducing extracellular environmental signals to the cytoplasm via inner-membrane sigma regulators. The molecular details of ferric siderophore-mediated activation of the iron import machinery through a sigma regulator are unclear. Here, we present the 1.56 Å resolution structure of the periplasmic complex of the C-terminal CSS domain (CCSSD) of PupR, the sigma regulator in the Pseudomonas capeferrum pseudobactin BN7/8 transport system, and the N-terminal signaling domain (NTSD) of PupB, an outer-membrane TonB-dependent transducer. The structure revealed that the CCSSD consists of two subdomains: a juxta-membrane subdomain, which has a novel all-β-fold, followed by a secretin/TonB, short N-terminal subdomain at the C terminus of the CCSSD, a previously unobserved topological arrangement of this domain. Using affinity pulldown assays, isothermal titration calorimetry, and thermal denaturation CD spectroscopy, we show that both subdomains are required for binding the NTSD with micromolar affinity and that NTSD binding improves CCSSD stability. Our findings prompt us to present a revised model of CSS wherein the CCSSD:NTSD complex forms prior to ferric-siderophore binding. Upon siderophore binding, conformational changes in the CCSSD enable regulated intramembrane proteolysis of the sigma regulator, ultimately resulting in transcriptional regulation.




ato

Atomic force microscopy-based characterization of the interaction of PriA helicase with stalled DNA replication forks [DNA and Chromosomes]

In bacteria, the restart of stalled DNA replication forks requires the DNA helicase PriA. PriA can recognize and remodel abandoned DNA replication forks, unwind DNA in the 3'-to-5' direction, and facilitate the loading of the helicase DnaB onto the DNA to restart replication. Single-stranded DNA–binding protein (SSB) is typically present at the abandoned forks, but it is unclear how SSB and PriA interact, although it has been shown that the two proteins interact both physically and functionally. Here, we used atomic force microscopy to visualize the interaction of PriA with DNA substrates with or without SSB. These experiments were done in the absence of ATP to delineate the substrate recognition pattern of PriA before its ATP-catalyzed DNA-unwinding reaction. These analyses revealed that in the absence of SSB, PriA binds preferentially to a fork substrate with a gap in the leading strand. Such a preference has not been observed for 5'- and 3'-tailed duplexes, suggesting that it is the fork structure that plays an essential role in PriA's selection of DNA substrates. Furthermore, we found that in the absence of SSB, PriA binds exclusively to the fork regions of the DNA substrates. In contrast, fork-bound SSB loads PriA onto the duplex DNA arms of forks, suggesting a remodeling of PriA by SSB. We also demonstrate that the remodeling of PriA requires a functional C-terminal domain of SSB. In summary, our atomic force microscopy analyses reveal key details in the interactions between PriA and stalled DNA replication forks with or without SSB.




ato

COQ11 deletion mitigates respiratory deficiency caused by mutations in the gene encoding the coenzyme Q chaperone protein Coq10 [Lipids]

Coenzyme Q (Qn) is a vital lipid component of the electron transport chain that functions in cellular energy metabolism and as a membrane antioxidant. In the yeast Saccharomyces cerevisiae, coq1–coq9 deletion mutants are respiratory-incompetent, sensitive to lipid peroxidation stress, and unable to synthesize Q6. The yeast coq10 deletion mutant is also respiratory-deficient and sensitive to lipid peroxidation, yet it continues to produce Q6 at an impaired rate. Thus, Coq10 is required for the function of Q6 in respiration and as an antioxidant and is believed to chaperone Q6 from its site of synthesis to the respiratory complexes. In several fungi, Coq10 is encoded as a fusion polypeptide with Coq11, a recently identified protein of unknown function required for efficient Q6 biosynthesis. Because “fused” proteins are often involved in similar biochemical pathways, here we examined the putative functional relationship between Coq10 and Coq11 in yeast. We used plate growth and Seahorse assays and LC-MS/MS analysis to show that COQ11 deletion rescues respiratory deficiency, sensitivity to lipid peroxidation, and decreased Q6 biosynthesis of the coq10Δ mutant. Additionally, immunoblotting indicated that yeast coq11Δ mutants accumulate increased amounts of certain Coq polypeptides and display a stabilized CoQ synthome. These effects suggest that Coq11 modulates Q6 biosynthesis and that its absence increases mitochondrial Q6 content in the coq10Δcoq11Δ double mutant. This augmented mitochondrial Q6 content counteracts the respiratory deficiency and lipid peroxidation sensitivity phenotypes of the coq10Δ mutant. This study further clarifies the intricate connection between Q6 biosynthesis, trafficking, and function in mitochondrial metabolism.




ato

Print your own laboratory-grade microscope for US$18

(University of Bath) For the first time, labs around the world can 3D print their own precision microscopes, thanks to an open-source design created at Bath.




ato

Indicators of cancer may also be markers of heart failure

(Wiley) Heart failure and cancer are conditions with a number of shared characteristics. A new study published in the Journal of Internal Medicine found that in patients with heart failure, several known tumor markers can also be indicators of heart failure severity and progression.




ato

NIH clinical trial tests remdesivir plus anti-inflammatory drug baricitinib for COVID-19

(NIH/National Institute of Allergy and Infectious Diseases) A randomized, controlled clinical trial evaluating the safety and efficacy of a treatment regimen of the investigational antiviral remdesivir plus the anti-inflammatory drug baricitinib for COVID-19 has begun. The trial is now enrolling hospitalized adults with COVID-19 in the United States. The trial is expected to open at approximately 100 US and international sites. Investigators currently anticipate enrolling more than 1,000 participants. The National Institute of Allergy and Infectious Diseases is sponsoring the trial.




ato

Fresno residents adjust to first day of mandatory face masks

You can now add Fresno to the growing list of cities that are now requiring people to wear face masks in public places.





ato

The Maestro Project: A Patient Navigator for the Transition of Care for Youth With Type 1 Diabetes

Norma Van Walleghem
Feb 1, 2011; 24:9-13
From Research to Practice/Transitions in Young Adults with Type 1 Diabetes




ato

Educator Experience with the U.S. Diabetes Conversation Map(R) Education Program in the Journey for Control of Diabetes: The IDEA Study

Omar D. Fernandes
Jul 1, 2010; 23:194-198
Care Innovations




ato

Content creators being left out - Online fun and frolic but no royalties

As online parties continue to rise, the question of how artistes and other musicians will get paid from these virtual sessions becomes even more pertinent. During an online forum held by the Jamaica Reggae Industry Association (JaRIA) yesterday...




ato

COQ11 deletion mitigates respiratory deficiency caused by mutations in the gene encoding the coenzyme Q chaperone protein Coq10 [Lipids]

Coenzyme Q (Qn) is a vital lipid component of the electron transport chain that functions in cellular energy metabolism and as a membrane antioxidant. In the yeast Saccharomyces cerevisiae, coq1–coq9 deletion mutants are respiratory-incompetent, sensitive to lipid peroxidation stress, and unable to synthesize Q6. The yeast coq10 deletion mutant is also respiratory-deficient and sensitive to lipid peroxidation, yet it continues to produce Q6 at an impaired rate. Thus, Coq10 is required for the function of Q6 in respiration and as an antioxidant and is believed to chaperone Q6 from its site of synthesis to the respiratory complexes. In several fungi, Coq10 is encoded as a fusion polypeptide with Coq11, a recently identified protein of unknown function required for efficient Q6 biosynthesis. Because “fused” proteins are often involved in similar biochemical pathways, here we examined the putative functional relationship between Coq10 and Coq11 in yeast. We used plate growth and Seahorse assays and LC-MS/MS analysis to show that COQ11 deletion rescues respiratory deficiency, sensitivity to lipid peroxidation, and decreased Q6 biosynthesis of the coq10Δ mutant. Additionally, immunoblotting indicated that yeast coq11Δ mutants accumulate increased amounts of certain Coq polypeptides and display a stabilized CoQ synthome. These effects suggest that Coq11 modulates Q6 biosynthesis and that its absence increases mitochondrial Q6 content in the coq10Δcoq11Δ double mutant. This augmented mitochondrial Q6 content counteracts the respiratory deficiency and lipid peroxidation sensitivity phenotypes of the coq10Δ mutant. This study further clarifies the intricate connection between Q6 biosynthesis, trafficking, and function in mitochondrial metabolism.




ato

The transcriptional regulator MEIS2 sets up the ground state for palatal osteogenesis in mice [Gene Regulation]

Haploinsufficiency of Meis homeobox 2 (MEIS2), encoding a transcriptional regulator, is associated with human cleft palate, and Meis2 inactivation leads to abnormal palate development in mice, implicating MEIS2 functions in palate development. However, its functional mechanisms remain unknown. Here we observed widespread MEIS2 expression in the developing palate in mice. Wnt1Cre-mediated Meis2 inactivation in cranial neural crest cells led to a secondary palate cleft. Importantly, about half of the Wnt1Cre;Meis2f/f mice exhibited a submucous cleft, providing a model for studying palatal bone formation and patterning. Consistent with complete absence of palatal bones, the results from integrative analyses of MEIS2 by ChIP sequencing, RNA-Seq, and an assay for transposase-accessible chromatin sequencing identified key osteogenic genes regulated directly by MEIS2, indicating that it plays a fundamental role in palatal osteogenesis. De novo motif analysis uncovered that the MEIS2-bound regions are highly enriched in binding motifs for several key osteogenic transcription factors, particularly short stature homeobox 2 (SHOX2). Comparative ChIP sequencing analyses revealed genome-wide co-occupancy of MEIS2 and SHOX2 in addition to their colocalization in the developing palate and physical interaction, suggesting that SHOX2 and MEIS2 functionally interact. However, although SHOX2 was required for proper palatal bone formation and was a direct downstream target of MEIS2, Shox2 overexpression failed to rescue the palatal bone defects in a Meis2-mutant background. These results, together with the fact that Meis2 expression is associated with high osteogenic potential and required for chromatin accessibility of osteogenic genes, support a vital function of MEIS2 in setting up a ground state for palatal osteogenesis.




ato

Seminal Plasma Proteome as an Indicator of Sperm Dysfunction and Low Sperm Motility

Yunlei Li
Apr 20, 2020; 0:RA120.002017v1-mcp.RA120.002017
Research




ato

Human Hepatocyte Nuclear Factor 4-{alpha} Encodes Isoforms with Distinct Transcriptional Functions

Élie Lambert
May 1, 2020; 19:808-827
Research




ato

Cybersecurity of NATO’s Space-based Strategic Assets

1 July 2019

Almost all modern military engagements rely on space-based assets, but cyber vulnerabilities can undermine confidence in the performance of strategic systems. This paper will evaluate the threats, vulnerabilities and consequences of cyber risks to strategic systems.

Dr Beyza Unal

Senior Research Fellow, International Security Programme

2019-06-25-Space-Cybersecurity.jpg

The radar domes of RAF Menwith Hill, reported to be the biggest spy base in the world, dominate the skyline on 30 October 2007 in Harrogate, UK. Photo: Getty Images

Summary

  • All satellites depend on cyber technology including software, hardware and other digital components. Any threat to a satellite’s control system or available bandwidth poses a direct challenge to national critical assets.
  • NATO’s missions and operations are conducted in the air, land, cyber and maritime domains. Space-based architecture is fundamental to the provision of data and services in each of these contexts. The critical dependency on space has resulted in new cyber risks that disproportionately affect mission assurance. Investing in mitigation measures and in the resilience of space systems for the military is key to achieving protection in all domains.
  • Almost all modern military engagements rely on space-based assets. During the US-led invasion of Iraq in 2003, 68 per cent of US munitions were guided utilizing space-based means (including laser-, infrared- and satellite-guided munitions); up sharply from 10 per cent in 1990–91, during the first Gulf war. In 2001, 60 per cent of the weapons used by the US in Afghanistan were precision-guided munitions, many of which had the capability to use information provided by space-based assets to correct their own positioning to hit a target.
  • NATO does not own satellites. It owns and operates a few terrestrial elements, such as satellite communications anchor stations and terminals. It requests access to products and services – such as space weather reports and satellite overflight reports provided via satellite reconnaissance advance notice systems – but does not have direct access to satellites: it is up to individual NATO member states to determine whether they allow access.
  • Cyber vulnerabilities undermine confidence in the performance of strategic systems. As a result, rising uncertainty in information and analysis continues to impact the credibility of deterrence and strategic stability. Loss of trust in technology also has implications for determining the source of a malicious attack (attribution), strategic calculus in crisis decision-making and may increase the risk of misperception.




ato

Understanding NATO Obligations Under the NPT

The objective of the project is to understand Alliance obligations within the framework of nuclear non-proliferation and disarmament treaties.

Examining obligations under the Treaty on the Non-Proliferation of Nuclear Weapons (NPT), and exploring new approaches that NATO could adopt to reconcile strategic stability with nuclear disarmament policies which could be introduced at the 2020 NPT Review Conference (RevCon).

The project facilitates the reconciliation of different positions in advance of the RevCon by providing a platform for stakeholders to communicate their respective positions and engage in constructive dialogue. Key research findings and contemporary analysis will be disseminated to officials and the policy community.

Through dialogue and research, the project aims to reduce polarisation in the nuclear field and consequently lay a foundation for increased collaboration during the discussions. It also provides a unique opportunity for NATO countries to explore specific new approaches, including in relation to identifying and analysing relevant geopolitical conditions for nuclear disarmament measures that will inform their inputs into the RevCon and related policy framework discussions.

This project is supported by the Carnegie Corporation of New York.




ato

It's a man's world: carnal spectatorship and dissonant masculinities in Islamic State videos

7 May 2020 , Volume 96, Number 3

Manni Crone

Islamic State videos have often been associated with savage violence and beheadings. An in-depth scrutiny however reveals another striking feature: that female bodies are absent, blurred or mute. Examining a few Islamic State videos in depth, the article suggests that the invisibility of women in tandem with the ostentatious visibility of male bodies enable gendered and embodied spectators to indulge in homoerotic as well as heterosexual imaginaries. In contrast to studies on visual security and online radicalization which assert that images affect an audience, this article focuses on the interaction between video and audience and argues that spectators are not only rational and emotional but embodied and gendered as well. Islamic State videos do not only attract western foreign fighters through religious–ideological rhetoric or emotional impact but also through gendered forms of pleasure and desire that enable carnal imagination and identification. The article probes the analytical purchase of carnal aesthetics and spectatorship.




ato

Can fluorescence-guided surgery help identify all lesions in unknown locations or is the integrated use of a roadmap created by preoperative imaging mandatory? A blinded study in prostate cancer patients.

Rationale: Lymphatic tracers can help visualize the lymphatic drainage patterns and sentinel nodes of individual prostate cancer patients. To determine the role of nuclear medicine, in particular the positional guidance of a SPECT/CT-based 3D imaging roadmap, in this process we studied to which extend fluorescence-guidance underestimated the number of target lesions. Methods: SPECT/CT imaging was performed after intraprostatic tracer administration of either ICG-99mTc-nanocolloid (hybrid tracer group) or 99mTc-nanocolloid to create a roadmap that depicted all sentinel nodes (SNs). Patients who received 99mTc-nanocolloid were injected with "free" ICG immediately prior to surgery ("free" ICG group). Before unblinding, fluorescence-guidance was used for intraoperative SN identification. This was followed by extended pelvic lymph node dissection (ePLND). Following unblinding of the SPECT/CT images, the number of missed SN’s were recorded and their resection was pursued when the anatomy allowed. Results: Preoperative SPECT/CT revealed no differences in the SN identification rate between ICG-99mTc-nanocolloid and 99mTc-nanocolloid. However, fluorescence-guidance only allowed intraoperative removal of all SNs in 40% of patients in the hybrid tracer group and in 20% of patients in the "free" ICG group. Overall, 75.9% of the intraoperatively resected SNs in the hybrid tracer group and 51.8% of the SNs in the "free" ICG group were removed solely under fluorescence-guidance. During ePLND 22 additional SNs were resected (7 in the hybrid tracer group and 15 in the "free" ICG group). After unblinding 18 remaining SNs were identified (6 in the hybrid group and 12 in the "free" ICG group). In the "free" ICG group, ex vivo evaluation of the excised specimens revealed that 14 SNs removed under ePLND or after unblinding contained radioactivity but no fluorescence. Conclusion: The preoperative imaging roadmap provided by SPECT/CT enhanced the detection of prostate SNs in more ectopic locations in 17 of the 25 patients and the hybrid tracer ICG-99mTc-nanocolloid was shown to outperform "free" ICG. Overall, fluorescence-guided pelvic nodal surgery underestimated the number of SNs in 60-80% of patients.




ato

Inflammation-based index and 68Ga-DOTATOC PET-derived uptake and volumetric parameters predict outcome in neuroendocrine tumor patients treated with 90Y-DOTATOC

We performed post-hoc analyses on the utility of pre-therapeutic and early interim 68Ga-DOTA-Tyr3-octreotide (68Ga-DOTATOC) positron emission tomography (PET) tumor uptake and volumetric parameters and a recently proposed biomarker, the inflammation-based index (IBI), for peptide receptor radionuclide therapy (PRRT) in neuroendocrine tumor (NET) patients treated with 90Y-DOTATOC in the setting of a prospective phase II trial. Methods: Forty-three NET patients received up to four cycles of 1.85 GBq/m²/cycle 90Y-DOTATOC with a maximal kidney biologic effective dose of 37 Gy. All patients underwent a 68Ga-DOTATOC PET/computed tomography (CT) at baseline and seven weeks after the first PRRT cycle. 68Ga-DOTATOC-avid tumor lesions were semi-automatically delineated using a customized standardized uptake value (SUV) threshold-based approach. PRRT response was assessed on CT using RECIST 1.1. Results: Median progression-free survival (PFS) and overall survival (OS) were 13.9 and 22.3 months, respectively. An SUVmean higher than 13.7 (75th percentile (P75)) was associated with better survival (hazard ratio (HR) 0.45; P = 0.024), whereas a 68Ga-DOTATOC-avid tumor volume higher than 578 ml (P75) was associated with worse OS (HR 2.18; P = 0.037). Elevated baseline IBI was associated with worse OS (HR 3.90; P = 0.001). Multivariate analysis corroborated independent associations between OS and SUVmean (P = 0.016) and IBI (P = 0.015). No significant correlations with PFS were found. A composite score based on SUVmean and IBI allowed to further stratify patients in three categories with significantly different survival. On early interim PET, a decrease in SUVmean of more than 17% (P75) was associated with worse survival (HR 2.29; P = 0.024). Conclusion: Normal baseline IBI and high 68Ga-DOTATOC tumor uptake predict better outcome in NET patients treated with 90Y-DOTATOC. This can be used for treatment personalization. Interim 68Ga-DOTATOC PET does not provide information for treatment personalization.




ato

Quantitative 3D assessment of 68Ga-DOTATOC PET/MRI with diffusion-weighted imaging to assess imaging markers for gastroendopancreatic neuroendocrine tumors: Preliminary results

68Ga-DOTATOC-PET/MRI (68Gallium-DOTATOC-positron emission tomography/magnetic resonance imaging) combines the advantages of PET in the acquisition of metabolic-functional information with the high soft tissue contrast of MRI. Standardized uptake values (SUV) in tumors were suggested as a measure of somatostatin receptor expression. A challenge with receptor ligands is, that the distribution volume is confined to tissues with tracer-uptake, potentially limiting SUV quantification. In this study, different functional, three-dimensional (3D) SUV, apparent diffusion coefficient (ADC) parameters and arterial tumor enhancement were tested for the characterization of gastroendopancreatic neuroendocrine tumors (GEP-NET). Methods: For this single-center, cross-sectional study, 22 patients with 24 histologically confirmed GEP-NET lesions (15 men/7 women; median, 61 years, range, 43-81 years), who received hybrid 68Ga-DOTA-PET/MRI examinations at 3T between January 2017 and July 2019 met eligibility criteria. SUVs, tumor-to-background ratios (TBR), the total functional tumor volume (TFTV), ADCmean and ADCmin were measured based on volumes of interest (VOI) and examined with receiver operating characteristic analysis to determine cut-off values for differentiation between low and intermediate grade GEP-NET. Spearman’s rank correlation coefficients were used to assess correlations between functional imaging parameters. Results: The ratio of PET-derived SUVmean and diffusion-weighted imaging (DWI)-derived ADCmin was introduced as a combined variable to predict tumor grade, outperforming single predictors. Based on a threshold ratio of 0.03 to be exceeded, tumors could be classified as grade 2 with a sensitivity of 86% and specificity of 100%. SUV and functional ADC values as well as arterial contrast enhancement parameters showed non-significant and mostly negligible correlations. Conclusion: As receptor density and tumor cellularity appear to be independent, potentially complementary phenomena, the combined PET/MRI ratio SUVmean/ADCmin may be used as a novel biomarker, allowing to differentiate between grade 1 and 2 GEP-NET.




ato

Light-induced radiosynthesis of 89ZrDFO-azepin-onartuzumab for imaging the hepatocyte growth factor receptor

Methods that provide rapid access to radiolabeled antibodies are vital in the development of diagnostic and radiotherapeutic agents for positron emission tomography (PET) or radioimmunotherapy. The human hepatocyte growth factor receptor (c-MET) signaling pathway is dysregulated in a number of malignancies including gastric cancer, and is an important biomarker in drug discovery. Here, we used a photoradiochemical approach to produce 89Zr-radiolabeled onartuzumab (a monovalent, anti-human c-MET antibody), starting directly from the fully formulated drug (MetMAb). Methods: Simultaneous 89Zr-radiolabeling and protein conjugation was performed in one-pot reactions containing 89Zr-oxalate, the photoactive chelate DFO-aryl azide (DFO-ArN3) and MetMAb to give 89ZrDFO-azepin-onartuzumab. As a control, 89ZrDFO-Bn-NCS-onartuzumab was prepared via a conventional two-step process using pre-purified onartuzumab and DFO-Bn-NCS. Radiotracers were purified by using size-exclusion methods and evaluated by radiochromatography. Radiochemical stability was studied in human serum and immunoreactivity was determined by cellular binding assays using MKN-45 gastric carcinoma cells. PET imaging at multiple time points (0–72 h) was performed in female athymic nude mice bearing subcutaneous MKN-45 xenografts. Biodistribution experiments were performed after the final image. Tumor specificity of 89ZrDFO-azepin-onartuzumab was assessed by competitive inhibition (blocking) studies. Results: Initial photoradiosynthesis experiments produced 89ZrDFO-azepin-onartuzumab in <15 min. with an isolated decay-corrected radiochemical yield (RCY) of 24.8%, a radiochemical purity (RCP) ~90% and a molar activity (Am) of ~1.5 MBq nmol-1. Reaction optimization improved the radiochemical conversion (RCC) of 89ZrDFO-azepin-onartuzumab to 56.9±4.1% (n = 3), with isolated RCYs of 41.2±10.6% (n = 3), and RCPs >90%. Conventional methods produced 89ZrDFO-Bn-NCS-onartuzumab with isolated RCY >97%, RCP >97% and Am ~14.0 MBq nmol-1. Both radiotracers were immunoreactive and stable in human serum. PET imaging and biodistribution studies showed high tumor uptake for both radiotracers. By 72 h, tumor and liver uptake reached 15.37±5.21 %ID g-1, 6.56±4.03 %ID g-1, respectively for 89ZrDFO-azepin-onartuzumab (n = 4), and 21.38±11.57 %ID g-1 and 18.84±6.03 %ID g-1 for 89ZrDFO-Bn-NCS-onartuzumab (n = 4). Blocking experiments gave a statistically significant reduction in tumor uptake (6.34±0.47 %ID g-1) of 89ZrDFO-azepin-onartuzumab (n = 4). Conclusion: Experiments demonstrate that photoradiosynthesis is a viable alternative approach for producing 89Zr-radiolabeled antibodies direct in protein formulation buffer which reduces protein aggregation and liver uptake.




ato

Improved Alignment of PET and CT Images in Whole-Body PET/CT in Cases of Respiratory Motion During CT

Respiratory motion during the CT and PET parts of a PET/CT scan leads to imperfect alignment of anatomical features seen by the two modalities. In this work, we concentrate on the effects of motion during CT. We propose a novel approach for improving the alignment. Methods: Respiratory waveform data were gathered during the CT and PET parts of 28 PET/CT scans of cancer patients with 40 lesions up to 3 cm size in the lung or upper abdomen. PET list-mode data were reconstructed by three reconstruction methods: PET/static, PET/EX or end of expiration (OncoFreeze), and a novel PET/matched method that used both waveforms. The three methods were compared. The distance between tumor positions in PET and CT were characterized in visual interpretation by physicians as well as quantitatively. Tumor standardized uptake values (SUVmax and SUVpeak) were determined relative to SUV based on the static method. Image noise was evaluated in the liver and compared to PET/static. Results: In visual interpretation, the rate of good alignment was 13/21, 13/23 and 18/21 for PET/static, PET/EX and PET/matched methods, respectively, and the mean PET-CT distances were 3.5, 5.1 and 2.8 mm. In visual comparison with PET/EX, the rate of good alignment was increased in 1/10 and 7/10 cases for PET/static and PET/matched. SUVmax was on average 21% higher than PET/static when either PET/EX or PET/matched was used. SUVpeak was 12% higher. Image noise in the liver was 15% higher than static for the PET/EX method, and 40% higher for PET/matched; that is, noise was much lower than in gated PET. Conclusion: Acquiring respiratory waveforms both in PET (as in the current state of the art) and in CT (an unusual key step in this approach) has the potential to improve the alignment of PET and CT images. A proposed method for using this information was tested. Improved alignment was demonstrated.




ato

64Cu-DOTATATE PET/CT for Imaging Patients with Known or Suspected Somatostatin Receptor-Positive Neuroendocrine Tumors: Results of the First US Prospective, Reader-Blinded Clinical Trial

Studies demonstrate that the investigational 64Cu-DOTATATE radiopharmaceutical may provide diagnostic and logistical benefits over available imaging agents for patients with somatostatin receptor (SSTR)-positive neuroendocrine tumors (NETs). Accordingly, we aimed to prospectively determine the lowest dose of 64Cu-DOTATATE that facilitates diagnostic quality scans and evaluated the diagnostic performance and safety in a phase III study of patients with SSTR-expressing NETs. Methods: A dose-ranging study was conducted in 12 patients divided into 3 dose groups (111 MBq [3.0 mCi], 148 MBq [4.0 mCi], and 185 MBq [5.0 mCi] ± 10%) to determine the lowest dose of 64Cu-DOTATATE that produced diagnostic quality PET/CT images. Using the 64Cu-DOTATATE dose identified in the dose-ranging study, 3 independent nuclear medicine physicians who were blinded to all clinical information read PET/CT scans from 21 healthy volunteers and 42 NET-positive patients to determine those with "Disease" and "No Disease," as well as "Localized" versus "Metastatic" status. Blinded-reader evaluations were compared to a patient-specific standard of truth (SOT), which was established by an independent oncologist who used all previously available pathology, clinical, and conventional imaging data. Diagnostic performance calculated for 64Cu-DOTATATE included sensitivity, specificity, negative predictive value, positive predictive value, and accuracy. Inter- and intra-reader reliability, as well as ability to differentiate between localized and metastatic disease, was also determined. Adverse events (AEs) were recorded from 64Cu-DOTATATE injection through 48 hours post-injection. Results: The dose-ranging study identified 148 MBq (4.0 mCi) as the optimal dose to obtain diagnostic quality PET/CT images. Following database lock, diagnostic performance from an initial majority read of the 3 independent readers showed a significant 90.9% sensitivity (P = 0.0042) and 96.6% specificity (P < 0.0001) for detecting NETs, which translated to a 100.0% sensitivity and 96.8% specificity after correcting for an initial SOT misread. Excellent inter- and intra-reader reliability, as well as ability to distinguish between localized and metastatic disease, was also noted. No AEs were related to 64Cu-DOTATATE, and no serious AEs were observed. Conclusion: 64Cu-DOTATATE PET/CT is a safe imaging technique that provides high-quality and accurate images at a dose of 148 MBq (4.0 mCi) for the detection of somatostatin-expressing NETs.




ato

Tobacco smoking in people is not associated with altered 18 kDa-translocator protein levels: A Positron Emission Tomography study

Rationale: The effects of tobacco smoking on the brain’s immune system are not well elucidated. While nicotine is immunosuppressive, other constituents in tobacco smoke have inflammatory effects. Positron Emission Tomography (PET) imaging of the 18-kDa translocator protein (TSPO) provide a biomarker for microglia, the brain’s primary immunocompetent cells. This work compared brain TSPO levels in 20 tobacco smokers (abstinent for at least 2 hours) and 20 nonsmokers using a fully quantitative modeling approach for the first time. Methods: [11C]PBR28 PET scans were acquired with arterial blood sampling to estimate the metabolite-corrected input function. [11C]PBR28 volumes of distribution (VT) were estimated throughout the brain with multilinear analysis. Results: Statistical analyses revealed no evidence for significant differences in regional [11C]PBR28 VT between smokers and non-smokers (whole-brain Cohen’s d=0.09) despite adequate power to detect medium effect sizes. Conclusion: These findings inform previous PET studies reporting lower TSPO radiotracer concentrations in brain (measured as standardized uptake value, SUV) of tobacco smokers compared to nonsmokers by demonstrating the importance of accounting for radiotracer concentrations in plasma. These findings suggest that compared to nonsmokers, smokers have comparable TSPO levels in brain. Additional work with other biomarkers is needed to fully characterize effects of tobacco smoking on the brain’s immune system.




ato

Clinical evaluation of a data-driven respiratory gating algorithm for whole-body positron emission tomography with continuous bed motion

Respiratory gating is the standard to overcome respiration effects degrading image quality in positron emission tomography (PET). Data-driven gating (DDG) using signals derived from PET raw data are promising alternatives to gating approaches requiring additional hardware. However, continuous bed motion (CBM) scans require dedicated DDG approaches for axially-extended PET, compared to DDG for conventional step-and-shoot scans. In this study, a CBM-capable DDG algorithm was investigated in a clinical cohort, comparing it to hardware-based gating using gated and fully motion-corrected reconstructions. Methods: 56 patients with suspected malignancies in thorax or abdomen underwent whole-body 18F-FDG CBM-PET/CT imaging using DDG and hardware-based respiratory gating (pressure-sensitive belt gating, BG). Correlation analyses were performed on both gating signals. Besides static reconstructions, BG and DDG were used for optimally-gated PET (BG-OG, DDG-OG) and fully motion-corrected PET (elastic motion correction; BG-EMOCO, DDG-EMOCO). Metabolic volumes, SUVmax and SUVmean of lesions were compared amongst the reconstructions. Additionally, the quality of lesion delineation in different PET reconstructions was independently evaluated by three experts. Results: Global correlation coefficients between BG and DDG signals amounted to 0.48±0.11, peaking at 0.89±0.07 when scanning the kidney and liver region. In total, 196 lesions were analyzed. SUV measurements were significantly higher in BG-OG, DDG-OG, BG-EMOCO and DDG-EMOCO compared to static images (P<0.001; median SUVmax: static, 14.3±13.4; BG-EMOCO, 19.8±15.7; DDG-EMOCO, 20.5±15.6; BG-OG, 19.6±17.1; DDG-OG, 18.9±16.6). No significant differences between BG-OG and DDG-OG, and BG-EMOCO and DDG-EMOCO, respectively, were found. Visual lesion delineation was significantly better in BG-EMOCO and DDG-EMOCO than in static reconstructions (P<0.001); no significant difference was found comparing BG and DDG (EMOCO, OG, respectively). Conclusion: DDG-based motion-compensation of CBM-PET acquisitions outperforms static reconstructions, delivering qualities comparable to hardware-based approaches. The new algorithm may be a valuable alternative for CBM-PET systems.




ato

High Resolution Depth-Encoding PET Detector Module with Prismatoid Light Guide Array

Depth-encoding detectors with single-ended readout provide a practical, cost-effective approach for constructing high resolution and high sensitivity PET scanners. However, the current iteration of such detectors utilizes a uniform glass light guide to achieve depth-encoding, resulting in non-uniform performance throughout the detector array due to suboptimal intercrystal light sharing. We introduce Prism-PET, a single-ended readout PET detector module with a segmented light guide composed of an array of prismatoids that introduces enhanced, deterministic light sharing. Methods: High resolution PET detector modules were fabricated with single-ended readout of polished multicrystal lutetium yttrium orthosilicate (LYSO) scintillator arrays directly coupled 4-to-1 and 9-to-1 to arrays of 3.2 x 3.2 mm2 silicon photomultiplier pixels. Each scintillator array was coupled at the non-readout side to a light guide (one 4-to-1 module with a uniform glass light guide, one 4-to-1 Prism-PET module and one 9-to-1 Prism-PET module) to introduce intercrystal light sharing, which closely mimics the behavior of dual-ended readout with the additional benefit of improved crystal identification. Flood histogram data was acquired using a 3 MBq Na-22 source to characterize crystal identification and energy resolution. Lead collimation was used to acquire data at specific depths to determine depth-of-interaction (DOI) resolution. Results: The flood histogram measurements showed excellent and uniform crystal separation throughout the Prism-PET modules while the uniform glass light guide module had performance degradation at the edges and corners. A DOI resolution of 5.0 mm full width at half maximum (FWHM) and energy resolution of 13% were obtained in the uniform glass light guide module. By comparison, the 4-to-1 coupled Prism-PET module achieved 2.5 mm FWHM DOI resolution and 9% energy resolution. Conclusion: PET scanners based on our Prism-PET modules with segmented prismatoid light guide arrays can achieve high and uniform spatial resolution (9-to-1 coupling with ~ 1 mm crystals), high sensitivity, good energy and timing resolutions (using polished crystals and after applying DOI-correction), and compact size (depth-encoding eliminates parallax error and permits smaller ring-diameter).




ato

Biokinetics of Radiolabeled Monoclonal Antibody BC8: Differences in Biodistribution and Dosimetry among Hematologic Malignancies.

We reviewed 111In-DOTA-anti-CD45 antibody (BC8) imaging and bone marrow biopsy measurements to ascertain biodistribution and biokinetics of the radiolabeled antibody and to investigate differences based on type of hematologic malignancy. Methods: Serial whole-body scintigraphic images (4 time-points) were obtained after infusion of the 111In-DOTA-BC8 (176-406 MBq) in 52 adult patients with hematologic malignancies (lymphoma, multiple myeloma, acute myeloid leukemia and myelodysplastic syndrome). Counts were obtained for the regions of interest for spleen, liver, kidneys, testicles (in males), and two marrow sites (acetabulum and sacrum) and correction for attenuation and background was made. Bone marrow biopsies were obtained 14-24 hours post-infusion and percent of administered activity was determined. Radiation absorbed doses were calculated. Results: Initial uptake in liver averaged 32% ± 8.4% (S.D.) of administered activity (52 patients), which cleared monoexponentially with biological half-time of 293 ± 157 hours (33 patients) or did not clear (19 patients). Initial uptake in spleen averaged 22% ± 12% and cleared with a biological half-time 271 ± 185 hours (36 patients) or longer (6 patients). Initial uptake in kidney averaged 2.4% ± 2.0% and cleared with a biological half-time of 243 ± 144 hours (27 patients) or longer (9 patients). Initial uptake in red marrow averaged 23% ± 11% and cleared with half-times of 215 ± 107 hours (43 patients) or longer (5 patients). Whole-body retention half-times averaged 198 ± 75 hours. Splenic uptake was higher in the AML/MDS group when compared to the lymphoma group (p ≤ 0.05) and to the multiple myeloma group (p ≤ 0.10). Liver represented the dose-limiting organ. For liver uptake, no significant differences were observed between the three malignancy groups. Average calculated radiation absorbed doses per unit administered activity for a therapy infusions of 90Y-DOTA-BC8 were for red marrow: 470 ± 260 cGy/MBq, liver 1100 ± 330 cGy/MBq, spleen 4120 ± 1950 cGy/MBq, total body 7520 ± 20 cGy/MBq, osteogenic cells 290 ± 200 cGy/MBq, and kidneys 240 ± 200 cGy/MBqR. Conclusion: 111In-DOTA-BC8 had long retention time in liver, spleen, kidneys, and red marrow, and the highest absorbed doses were calculated for spleen and liver. Few differences were observed by malignancy type. The exception was greater splenic uptake among leukemia/MDS group when compared to lymphoma and multiple myeloma groups.




ato

Data Driven Respiratory Gating Outperforms Device-Based Gating for Clinical FDG PET/CT

A data-driven method for respiratory gating in PET has recently been commercially developed. We sought to compare the performance of the algorithm to an external, device-based system for oncological [18F]-FDG PET/CT imaging. Methods: 144 whole-body [18F]-FDG PET/CT examinations were acquired using a Discovery D690 or D710 PET/CT scanner (GE Healthcare), with a respiratory gating waveform recorded by an external, device based respiratory gating system. In each examination, two of the bed positions covering the liver and lung bases were acquired with duration of 6 minutes. Quiescent period gating retaining ~50% of coincidences was then able to produce images with an effective duration of 3 minutes for these two bed positions, matching the other bed positions. For each exam, 4 reconstructions were performed and compared: data driven gating (DDG-retro), external device-based gating (RPM Gated), no gating but using only the first 3 minutes of data (Ungated Matched), and no gating retaining all coincidences (Ungated Full). Lesions in the images were quantified and image quality was scored by a radiologist, blinded to the method of data processing. Results: The use of DDG-retro was found to increase SUVmax and to decrease the threshold-defined lesion volume in comparison to each of the other reconstruction options. Compared to RPM-gated, DDG-retro gave an average increase in SUVmax of 0.66 ± 0.1 g/mL (n=87, p<0.0005). Although results from the blinded image evaluation were most commonly equivalent, DDG-retro was preferred over RPM gated in 13% of exams while the opposite occurred in just 2% of exams. This was a significant preference for DDG-retro (p=0.008, n=121). Liver lesions were identified in 23 exams. Considering this subset of data, DDG-retro was ranked superior to Ungated Full in 6/23 (26%) of cases. Gated reconstruction using the external device failed in 16% of exams, while DDG-retro always provided a clinically acceptable image. Conclusion: In this clinical evaluation, the data driven respiratory gating technique provided superior performance as compared to the external device-based system. For the majority of exams the performance was equivalent, but data driven respiratory gating had superior performance in 13% of exams, leading to a significant preference overall.




ato

NEMESIS: Non-inferiority, Individual Patient Meta-analysis of Selective Internal Radiation Therapy with Yttrium-90 Resin Microspheres versus Sorafenib in Advanced Hepatocellular Carcinoma

In randomized clinical trials (RCTs), no survival benefit has been observed for selective internal radiotherapy (SIRT) over sorafenib in patients with advanced hepatocellular carcinoma (aHCC). This study aimed to assess by means of a meta-analysis whether overall survival (OS) with SIRT, as monotherapy or followed by sorafenib, is non-inferior to sorafenib, and compare safety profiles for patients with aHCC. Methods: We searched MEDLINE, EMBASE, and the Cochrane Library up to February 2019 to identify RCTs comparing SIRT as monotherapy, or followed by sorafenib, to sorafenib monotherapy among patients with aHCC. The main outcomes were OS and frequency of treatment-related severe adverse events (AEs grade ≥3). The per-protocol population was the primary analysis population. A non-inferiority margin of 1.08 in terms of hazard ratio (HR) was pre-specified for the upper boundary of 95% confidence interval (CI) for OS. Pre-specified subgroup analyses were performed. Results: Three RCTs, involving 1,243 patients, comparing sorafenib with SIRT (SIRveNIB and SARAH) or SIRT followed by sorafenib (SORAMIC), were included. After randomization, 411/635 (64.7%) patients allocated to SIRT and 522/608 (85.8%) allocated to sorafenib completed the studies without major protocol deviations. Median OS with SIRT, whether or not followed by sorafenib, was non-inferior to sorafenib (10.2 and 9.2 months, [HR 0.91, 95% CI 0.78–1.05]). Treatment-related severe adverse events were reported in 149/515 patients (28.9%) who received SIRT and 249/575 (43.3%) who received sorafenib only (p<0.01). Conclusion: SIRT as initial therapy for aHCC is non-inferior to sorafenib in terms of OS, and offers a better safety profile.




ato

Equatorial Guinea in 2020: Prospects for Economic and Governance Reforms

Research Event

31 January 2020 - 2:00pm to 3:00pm

Chatham House | 10 St James's Square | London | SW1Y 4LE

Event participants

Tutu Alicante, Executive Director, EG Justice
Chair: Dr Alex Vines OBE, Managing Director, Ethics, Risk & Resilience; Director, Africa Programme, Chatham House

Despite boasting one of Africa’s highest GDP per capita rates, much of Equatorial Guinea’s population remain in poverty, with the world’s largest gap between its GDP per capita rates and human development index score. Equatorial Guinea’s economy is highly dependent on oil exports but production is in decline. In December 2019, the IMF Executive Board approved a US$282.8 million three-year Extended Fund Facility loan for Equatorial Guinea with provisions for promoting economic diversification, good governance, increasing transparency and fighting corruption. The country is also seeking to join the Extractive Industries Transparency Initiative.

At this event, Tutu Alicante will discuss prospects for meaningful reforms in Equatorial Guinea to improve economic governance, human rights and achieve sustainable and inclusive economic growth.

THIS EVENT IS NOW FULL AND REGISTRATION HAS CLOSED.

Sahar Eljack

Programme Administrator, Africa Programme
+ 44 (0) 20 7314 3660




ato

Guidance Document: Validation of a High-Performance Liquid Chromatography-Tandem Mass Spectrometry Immunopeptidomics Assay for the Identification of HLA Class I Ligands Suitable for Pharmaceutical Therapies [Commentary]

For more than two decades naturally presented, human leukocyte antigen (HLA)-restricted peptides (immunopeptidome) have been eluted and sequenced using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Since, identified disease-associated HLA ligands have been characterized and evaluated as potential active substances. Treatments based on HLA-presented peptides have shown promising results in clinical application as personalized T cell-based immunotherapy. Peptide vaccination cocktails are produced as investigational medicinal products under GMP conditions. To support clinical trials based on HLA-presented tumor-associated antigens, in this study the sensitive LC-MS/MS HLA class I antigen identification pipeline was fully validated for our technical equipment according to the current US Food and Drug Administration (FDA) and European Medicines Agency (EMA) guidelines.

The immunopeptidomes of JY cells with or without spiked-in, isotope labeled peptides, of peripheral blood mononuclear cells of healthy volunteers as well as a chronic lymphocytic leukemia and a bladder cancer sample were reliably identified using a data-dependent acquisition method. As the LC-MS/MS pipeline is used for identification purposes, the validation parameters include accuracy, precision, specificity, limit of detection and robustness.




ato

Human Hepatocyte Nuclear Factor 4-{alpha} Encodes Isoforms with Distinct Transcriptional Functions [Research]

HNF4α is a nuclear receptor produced as 12 isoforms from two promoters by alternative splicing. To characterize the transcriptional capacities of all 12 HNF4α isoforms, stable lines expressing each isoform were generated. The entire transcriptome associated with each isoform was analyzed as well as their respective interacting proteome. Major differences were noted in the transcriptional function of these isoforms. The α1 and α2 isoforms were the strongest regulators of gene expression whereas the α3 isoform exhibited significantly reduced activity. The α4, α5, and α6 isoforms, which use an alternative first exon, were characterized for the first time, and showed a greatly reduced transcriptional potential with an inability to recognize the consensus response element of HNF4α. Several transcription factors and coregulators were identified as potential specific partners for certain HNF4α isoforms. An analysis integrating the vast amount of omics data enabled the identification of transcriptional regulatory mechanisms specific to certain HNF4α isoforms, hence demonstrating the importance of considering all isoforms given their seemingly diverse functions.




ato

COQ11 deletion mitigates respiratory deficiency caused by mutations in the gene encoding the coenzyme Q chaperone protein Coq10 [Lipids]

Coenzyme Q (Qn) is a vital lipid component of the electron transport chain that functions in cellular energy metabolism and as a membrane antioxidant. In the yeast Saccharomyces cerevisiae, coq1–coq9 deletion mutants are respiratory-incompetent, sensitive to lipid peroxidation stress, and unable to synthesize Q6. The yeast coq10 deletion mutant is also respiratory-deficient and sensitive to lipid peroxidation, yet it continues to produce Q6 at an impaired rate. Thus, Coq10 is required for the function of Q6 in respiration and as an antioxidant and is believed to chaperone Q6 from its site of synthesis to the respiratory complexes. In several fungi, Coq10 is encoded as a fusion polypeptide with Coq11, a recently identified protein of unknown function required for efficient Q6 biosynthesis. Because “fused” proteins are often involved in similar biochemical pathways, here we examined the putative functional relationship between Coq10 and Coq11 in yeast. We used plate growth and Seahorse assays and LC-MS/MS analysis to show that COQ11 deletion rescues respiratory deficiency, sensitivity to lipid peroxidation, and decreased Q6 biosynthesis of the coq10Δ mutant. Additionally, immunoblotting indicated that yeast coq11Δ mutants accumulate increased amounts of certain Coq polypeptides and display a stabilized CoQ synthome. These effects suggest that Coq11 modulates Q6 biosynthesis and that its absence increases mitochondrial Q6 content in the coq10Δcoq11Δ double mutant. This augmented mitochondrial Q6 content counteracts the respiratory deficiency and lipid peroxidation sensitivity phenotypes of the coq10Δ mutant. This study further clarifies the intricate connection between Q6 biosynthesis, trafficking, and function in mitochondrial metabolism.




ato

Uber and the ATO's $3.8 million taxi fare

Tax Office could turn to rideshare service to curb $3.8 million taxi fare




ato

Taxpayer records exposed by serious ATO, myGov security flaw

Taxpayer says he was hung up on twice by call centre staff when trying to report the issue.




ato

ATO fumes after cyber criminals attack myGov portal during last days of Tax Time 2016

Tensions emerge between Tax Office and Human Services after hackers take down myGov




ato

Tax time in danger from ATO's tech wreck

IT projects thrown overboard as ATO orders all hands to keep tax time afloat.




ato

Latest ATO online system failure hits at peak tax time

Outages have hit the Tax Office's IT system on Wednesday.




ato

The everyday practices of global finance: gender and regulatory politics of ‘diversity’

6 November 2019 , Volume 95, Number 6

Penny Griffin

This article argues that practices of global finance provide a rich opportunity to consider gender's embodiment in everyday, but highly regulatory, financial life. Tracing a pathway through the rise of the ‘diversity agenda’ in global finance in the wake of the global financial crisis, the article asks how ‘diversity’ has shaped the global financial services industry, and whether it has challenged the reproduction of gendered power in global finance. Recent, innovative feminist political economy work has laid out a clear challenge to researchers of the global political economy to explore how everyday practices have become significant sites of gendered, regulatory power, and this article takes up this challenge, analysing how the rise of ‘diversity’ in financial services reveals the crucial intersections of gendered power and everyday economic practices. Using a conceptual framework drawn explicitly from Marysia Zalewski's work, this article advances critical inquiry into how gender has become an often unacknowledged way of writing the world of global finance, in ongoing, and problematic, ways. It proposes that the practices and futures of the diversity agenda in global finance provide a window into the persistent failure of global finance to reconfigure its foundational masculinism, and asks that financial actors begin to take seriously the foundational, gendered myths on which global finance has been built.




ato

The EU Cannot Build a Foreign Policy on Regulatory Power Alone

11 February 2020

Alan Beattie

Associate Fellow, Global Economy and Finance Programme and Europe Programme
Brussels will find its much-vaunted heft in setting standards cannot help it advance its geopolitical interests.

2020-02-11-Leyen.jpg

EU Commission President Ursula von der Leyen speaks at the European Parliament in Strasbourg in February. Photo: Getty Images.

There are two well-established ideas in trade. Individually, they are correct. Combined, they can lead to a conclusion that is unfortunately wrong.

The first idea is that, across a range of economic sectors, the EU and the US have been engaged in a battle to have their model of regulation accepted as the global one, and that the EU is generally winning.

The second is that governments can use their regulatory power to extend strategic and foreign policy influence.

The conclusion would seem to be that the EU, which has for decades tried to develop a foreign policy, should be able to use its superpower status in regulation and trade to project its interests and its values abroad.

That’s the theory. It’s a proposition much welcomed by EU policymakers, who know they are highly unlikely any time soon to acquire any of the tools usually required to run an effective foreign policy.

The EU doesn’t have an army it can send into a shooting war, enough military or political aid to prop up or dispense of governments abroad, or a centralized intelligence service. Commission President Ursula von der Leyen has declared her outfit to be a ‘geopolitical commission’, and is casting about for any means of making that real.

Through the ‘Brussels effect’ whereby European rules and standards are exported via both companies and governments, the EU has indeed won many regulatory battles with the US.

Its cars, chemicals and product safety regulations are more widely adopted round the world than their American counterparts. In the absence of any coherent US offering, bar some varied state-level systems, the General Data Protection Regulation (GDPR) is the closest thing the world has to a single model for data privacy, and variants of it are being adopted by dozens of countries.

The problem is this. Those parts of global economic governance where the US is dominant – particularly the dollar payments system – are highly conducive to projecting US power abroad. The extraterritorial reach of secondary sanctions, plus the widespread reliance of banks and companies worldwide on dollar funding – and hence the American financial system – means that the US can precisely target its influence.

The EU can enforce trade sanctions, but not in such a powerful and discriminatory way, and it will always be outgunned by the US. Donald Trump could in effect force European companies to join in his sanctions on Iran when he pulled out of the nuclear deal, despite EU legislation designed to prevent their businesses being bullied. He can go after the chief financial officer of Huawei for allegedly breaching those sanctions.

By contrast, the widespread adoption of GDPR or data protection regimes inspired by it may give the EU a warm glow of satisfaction, but it cannot be turned into a geopolitical tool in the same way.

Nor, necessarily, does it particularly benefit the EU economy. Europe’s undersized tech sector seems unlikely to unduly benefit from the fact that data protection rules were written in the EU. Indeed, one common criticism of the regulations is that they entrench the power of incumbent tech giants like Google.

There is a similar pattern at work in the adoption of new technologies such as artificial intelligence and the Internet of Things. In that field, the EU and its member states are also facing determined competition from China, which has been pushing its technologies and standards through forums such as the International Telecommunication Union.

The EU has been attempting to write international rules for the use of AI which it hopes to be widely adopted. But again, these are a constraint on the use of new technologies largely developed by others, not the control of innovation.

By contrast, China has created a vast domestic market in technologies like facial recognition and unleashed its own companies on it. The resulting surveillance kit can then be marketed to emerging market governments as part of China’s enduring foreign policy campaign to build up supporters in the developing world.

If it genuinely wants to turn its economic power into geopolitical influence – and it’s not entirely clear what it would do with it if it did – the EU needs to recognize that not all forms of regulatory and trading dominance are the same.

Providing public goods to the world economy is all very well. But unless they are so particular in nature that they project uniquely European values and interests, that makes the EU a supplier of useful plumbing but not a global architect of power.

On the other hand, it could content itself with its position for the moment. It could recognize that not until enough hard power – guns, intelligence, money – is transferred from the member states to the centre, or until the member states start acting collectively, will the EU genuinely become a geopolitical force. Speaking loudly and carrying a stick of foam rubber is rarely a way to gain credibility in international relations.

This article is part of a series of publications and roundtable discussions in the Chatham House Global Trade Policy Forum.




ato

Slc43a3 is a regulator of free fatty acid flux

Kathrin B. Hasbargen
May 1, 2020; 61:734-745
Research Articles




ato

2-Chlorofatty acids are biomarkers of sepsis mortality and mediators of barrier dysfunction in rats [Research Articles]

Sepsis is defined as the systemic, dysregulated host immune response to an infection that leads to injury to host organ systems, and, often, death. Complex interactions between pathogens and their hosts elicit microcirculatory dysfunction. Neutrophil myeloperoxidase (MPO) is critical for combating pathogens, but MPO-derived hypochlorous acid (HOCl) can react with host molecular species as well. Plasmalogens are targeted by HOCl, leading to the production of 2-chlorofatty acids (2-CLFAs). 2-CLFAs are associated with human sepsis mortality, decrease in vitroendothelial barrier function, and activate human neutrophil extracellular trap formation. Here, we sought to examine 2-CLFAs in an in vivorat sepsis model. Intraperitoneal cecal slurry sepsis with clinically relevant rescue therapies led to ~73% mortality and evidence of microcirculatory dysfunction. Plasma concentrations of 2-CLFAs assessed 8h after sepsis induction were lower in rats that survived sepsis than in non-survivors. 2-CLFA levels were elevated in kidney, liver, spleen, lung, colon and ileum in septic animals. In vivo, exogenous 2-CLFA treatments increased kidney permeability, and in in vitroexperiments 2-CLFA also increased epithelial surface expression of vascular cell adhesion molecule 1 and decreased epithelial barrier function. Collectively, these studies support a role of free 2-CLFAs as biomarkers of sepsis mortality, potentially mediated, in part, by 2-CLFA-elicited endothelial and epithelial barrier dysfunction.




ato

Detection of multiple autoantibodies in patients with ankylosing spondylitis using nucleic acid programmable protein arrays [11. Microarrays/Combinatorics/Display Technology]

Ankylosing Spondylitis (AS) is a common, inflammatory rheumatic disease, which primarily affects the axial skeleton and is associated with sacroiliitis, uveitis and enthesitis. Unlike other autoimmune rheumatic diseases, such as rheumatoid arthritis or systemic lupus erythematosus, autoantibodies have not yet been reported to be a feature of AS. We therefore wished to determine if plasma from patients with AS contained autoantibodies and if so, characterize and quantify this response in comparison to patients with Rheumatoid Arthritis (RA) and healthy controls. Two high-density nucleic acid programmable protein arrays expressing a total of 3498 proteins were screened with plasma from 25 patients with AS, 17 with RA and 25 healthy controls. Autoantigens identified were subjected to Ingenuity Pathway Analysis in order to determine patterns of signalling cascades or tissue origin. 44% of patients with Ankylosing Spondylitis demonstrated a broad autoantibody response, as compared to 33% of patients with RA and only 8% of healthy controls. Individuals with AS demonstrated autoantibody responses to shared autoantigens, and 60% of autoantigens identified in the AS cohort were restricted to that group. The AS patients autoantibody responses were targeted towards connective, skeletal and muscular tissue, unlike those of RA patients or healthy controls. Thus, patients with AS show evidence of systemic humoral autoimmunity and multispecific autoantibody production. Nucleic Acid Programmable Protein Arrays constitute a powerful tool to study autoimmune diseases.




ato

Seminal Plasma Proteome as an Indicator of Sperm Dysfunction and Low Sperm Motility [Research]

Molecular mechanisms underlying sperm motility have not been fully explained, particularly in chickens. The objective was to identify seminal plasma proteins associated with chicken sperm motility by comparing the seminal plasma proteomic profile of roosters with low sperm motility (LSM, n = 4) and high sperm motility (HSM, n = 4). Using a label-free MS-based method, a total of 522 seminal plasma proteins were identified, including 386 (~74%) previously reported and 136 novel ones. A total of 70 differentially abundant proteins were defined, including 48 more-abundant, 15 less-abundant, and seven proteins unique to the LSM group (specific proteins). Key secretory proteins like less-abundant ADGRG2 and more-abundant SPINK2 in the LSM suggested that the corresponding secretory tissues played a crucial role in maintaining sperm motility. Majority (80%) of the more-abundant and five specific proteins were annotated to the cytoplasmic domain which might be a result of higher plasma membrane damage and acrosome dysfunction in LSM. Additionally, more-abundant mitochondrial proteins were detected in LSM seminal plasma associated with lower spermatozoa mitochondrial membrane potential (m) and ATP concentrations. Further studies showed that the spermatozoa might be suffering from oxidative stress, as the amount of spermatozoa reactive oxygen species (ROS) were largely enhanced, seminal malondialdehyde (MDA) concentrations were increased, and the seminal plasma total antioxidant capacity (T-AOC) were decreased. Our study provides an additional catalog of chicken seminal plasma proteome and supports the idea that seminal plasma could be as an indicator of spermatozoa physiology. More-abundant of acrosome, mitochondria and sperm cytoskeleton proteins in the seminal plasma could be a marker of sperm dysfunction and loss of motility. The degeneration of spermatozoa caused the reduced seminal T-AOC and enhanced oxidative stress might be potential determinants of low sperm motility. These results could extend our understanding of sperm motility and sperm physiology regulation.




ato

Ukraine and NATO: Destination Unknown

1 August 2008 , Number 10

As ever between NATO and Ukraine, the process advances, the destination is in doubt. Or so it seemed until the Bucharest summit declaration of April 3. The statement that Ukraine and Georgia ‘will become members of NATO’ was designed to remove doubt. Yet it was also designed to alleviate pressure on the organisation. Four months later, as the European Union prepares for its summit with Ukraine, pressure remains and doubt has returned.

James Sherr

Head, Russia and Eurasia Programme, Chatham House