rom Silencing the Guns in Africa by 2030: Lessons from Mozambique By www.chathamhouse.org Published On :: Tue, 07 Feb 2023 17:02:13 +0000 Silencing the Guns in Africa by 2030: Lessons from Mozambique 17 February 2023 — 7:00AM TO 9:00AM Anonymous (not verified) 7 February 2023 Addis Ababa and online A hybrid event in Addis Ababa reflecting on Mozambique’s 2019 peace agreement and the lessons it offers for the African Union’s ‘Silencing the Guns’ agenda by 2030. This event will explore opportunities for furthering the AU’s Silencing the Guns agenda by 2030 to assist Africa’s transformative development, highlighting lessons learnt from Mozambique’s experience. The ‘Silencing the Guns in Africa’ agenda, a flagship initiative of the African Union’s (AU) Agenda 2063, aspires to end all wars and conflict, prevent genocide, and stop gender-based violence. The 2019 peace agreement in Mozambique and the subsequent disarmament, demobilization and reintegration process supported by the United Nations (UN) but implemented by Mozambique’s government and institutions, provides experience and learning for other continental conflicts that have recently ended or resumed. Mozambique is seeking to break from the cyclical ‘conflict trap’ where once a country experiences one civil war, it is significantly more likely to experience additional episodes of violence. Since the end of Mozambique’s civil war in 1992, targeted armed conflict by RENAMO resumed in 2013 and ended through the new agreement in August 2019. The final reintegration into civilian life of former Mozambican combatants of opposition RENAMO will be completed in 2023. Mozambique and Switzerland – a key supporter of successive Mozambican peace processes – have become non-permanent members of the UN Security Council for the first time in their respective histories. At a moment when old vulnerabilities and new threats are apparent on the African continent, this seminar, held by Chatham House in partnership with the United Nations Development Programme (UNDP), explores opportunities to furthering the AU’s Silencing the Guns agenda by 2030 to assist Africa’s transformative development, as outlined by the UNDP in a report published in February 2022. This hybrid event is held in partnership with the African Union Commission and the United Nations Development Programme (UNDP). This event will also be broadcast live via the Africa Programme Facebook page. Event Summary: Silencing the guns in Africa by 2030 (PDF) Full Article
rom Guidance and best practices for nuclear cardiology laboratories during the coronavirus disease 2019 (COVID-19) pandemic: An Information Statement from ASNC and SNMMI By jnm.snmjournals.org Published On :: 2020-05-15T05:25:22-07:00 Full Article
rom Impact of 18F-FDG PET/MRI on Therapeutic Management of Women with Newly Diagnosed Breast Cancer: Results from a Prospective Double-Center Trial By jnm.snmjournals.org Published On :: 2024-10-10T08:33:38-07:00 Visual Abstract Full Article
rom One Bite from the Apple, One Bite from the Orange in the PRECISE-MDT Study By jnm.snmjournals.org Published On :: 2024-10-17T09:03:09-07:00 Full Article
rom Reply: One Bite from the Apple, One Bite from the Orange in the PRECISE-MDT Study and Limitations of Retrospective Study Design and Potential Bias in the PRECISE-MDT Study By jnm.snmjournals.org Published On :: 2024-10-17T09:03:09-07:00 Full Article
rom Head-to-Head Comparison of [68Ga]Ga-NOTA-RM26 and [18F]FDG PET/CT in Patients with Gastrointestinal Stromal Tumors: A Prospective Study By jnm.snmjournals.org Published On :: 2024-10-24T11:58:49-07:00 Visual Abstract Full Article
rom CT Enhancement of a Nasal Leech After Thrombectomy By jnm.snmjournals.org Published On :: 2024-10-30T08:04:14-07:00 Full Article
rom Pacific Rim timeline: Information for defenders from a braid of interlocking attack campaigns By news.sophos.com Published On :: Thu, 31 Oct 2024 12:31:52 +0000 Sophos X-Ops unveils five-year investigation tracking China-based groups targeting perimeter devices Full Article Security Operations Chinese APT Cyberoam featured Pacific Rim Story Sophos Firewall state-sponsored attackers
rom From the frontlines: Our CISO’s view of Pacific Rim By news.sophos.com Published On :: Thu, 31 Oct 2024 12:41:21 +0000 On beyond “Detect and Respond” and “Secure by Design” Full Article Security Operations Pacific Rim Pacific Rim thought leadership Sophos X-Ops
rom Stoichiometry of Nucleotide Binding to Proteasome AAA+ ATPase Hexamer Established by Native Mass Spectrometry By www.mcponline.org Published On :: 2020-12-01 Yadong YuDec 1, 2020; 19:1997-2014Research Full Article
rom Multi-sample mass spectrometry-based approach for discovering injury markers in chronic kidney disease By www.mcponline.org Published On :: 2020-12-20 Ji Eun KimDec 20, 2020; 0:RA120.002159v1-mcp.RA120.002159Research Full Article
rom Kinome Profiling of Primary Endometrial Tumors Using Multiplexed Inhibitor Beads and Mass Spectrometry Identifies SRPK1 as Candidate Therapeutic Target By www.mcponline.org Published On :: 2020-12-01 Alison M. KurimchakDec 1, 2020; 19:2068-2089Research Full Article
rom Identification of Microorganisms by Liquid Chromatography-Mass Spectrometry (LC-MS1) and in Silico Peptide Mass Libraries By www.mcponline.org Published On :: 2020-12-01 Peter LaschDec 1, 2020; 19:2125-2138Technological Innovation and Resources Full Article
rom A potential role for the Gsdf-eEF1{alpha} complex in inhibiting germ cell proliferation: A protein-interaction analysis in medaka (Oryzias latipes) from a proteomics perspective By www.mcponline.org Published On :: 2020-12-08 Xinting ZhangDec 8, 2020; 0:RA120.002306v1-mcp.RA120.002306Research Full Article
rom Imaging Mass Spectrometry and Lectin Analysis of N-linked Glycans in Carbohydrate Antigen Defined Pancreatic Cancer Tissues By www.mcponline.org Published On :: 2020-11-24 Colin T. McDowellNov 24, 2020; 0:RA120.002256v1-mcp.RA120.002256Research Full Article
rom Accelerating the field of epigenetic histone modification through mass spectrometry-based approaches By www.mcponline.org Published On :: 2020-11-17 Congcong LuNov 17, 2020; 0:R120.002257v1-mcp.R120.002257Review Full Article
rom PTM-Shepherd: analysis and summarization of post-translational and chemical modifications from open search results By www.mcponline.org Published On :: 2020-12-01 Daniel J. GeiszlerDec 1, 2020; 0:TIR120.002216v1-mcp.TIR120.002216Technological Innovation and Resources Full Article
rom Angiostatic cues from the matrix: Endothelial cell autophagy meets hyaluronan biology [Glycobiology and Extracellular Matrices] By www.jbc.org Published On :: 2020-12-04T00:06:06-08:00 The extracellular matrix encompasses a reservoir of bioactive macromolecules that modulates a cornucopia of biological functions. A prominent body of work posits matrix constituents as master regulators of autophagy and angiogenesis and provides molecular insight into how these two processes are coordinated. Here, we review current understanding of the molecular mechanisms underlying hyaluronan and HAS2 regulation and the role of soluble proteoglycan in affecting autophagy and angiogenesis. Specifically, we assess the role of proteoglycan-evoked autophagy in regulating angiogenesis via the HAS2-hyaluronan axis and ATG9A, a novel HAS2 binding partner. We discuss extracellular hyaluronan biology and the post-transcriptional and post-translational modifications that regulate its main synthesizer, HAS2. We highlight the emerging group of proteoglycans that utilize outside-in signaling to modulate autophagy and angiogenesis in cancer microenvironments and thoroughly review the most up-to-date understanding of endorepellin signaling in vascular endothelia, providing insight into the temporal complexities involved. Full Article
rom ERAD deficiency promotes mitochondrial dysfunction and transcriptional rewiring in human hepatic cells [Cell Biology] By www.jbc.org Published On :: 2020-12-04T00:06:05-08:00 Mitochondrial dysfunction is associated with a variety of human diseases including neurodegeneration, diabetes, nonalcohol fatty liver disease (NAFLD), and cancer, but its underlying causes are incompletely understood. Using the human hepatic cell line HepG2 as a model, we show here that endoplasmic reticulum-associated degradation (ERAD), an ER protein quality control process, is critically required for mitochondrial function in mammalian cells. Pharmacological inhibition or genetic ablation of key proteins involved in ERAD increased cell death under both basal conditions and in response to proinflammatory cytokines, a situation frequently found in NAFLD. Decreased viability of ERAD-deficient HepG2 cells was traced to impaired mitochondrial functions including reduced ATP production, enhanced reactive oxygen species (ROS) accumulation, and increased mitochondrial outer membrane permeability. Transcriptome profiling revealed widespread down-regulation of genes underpinning mitochondrial functions, and up-regulation of genes associated with tumor growth and aggression. These results highlight a critical role for ERAD in maintaining mitochondrial functional and structural integrity and raise the possibility of improving cellular and organismal mitochondrial function via enhancing cellular ERAD capacity. Full Article
rom Clearance of intracellular tau protein from neuronal cells via VAMP8-induced secretion [Cell Biology] By www.jbc.org Published On :: 2020-12-18T00:06:18-08:00 In Alzheimer's disease (AD), tau, a microtubule-associated protein (MAP), becomes hyperphosphorylated, aggregates, and accumulates in the somato-dendritic compartment of neurons. In parallel to its intracellular accumulation in AD, tau is also released in the extracellular space, as revealed by its increased presence in cerebrospinal fluid (CSF). Consistent with this, recent studies, including ours, have reported that neurons secrete tau, and several therapeutic strategies aim to prevent the intracellular tau accumulation. Previously, we reported that late endosomes were implicated in tau secretion. Here, we explore the possibility of preventing intracellular tau accumulation by increasing tau secretion. Using neuronal models, we investigated whether overexpression of the vesicle-associated membrane protein 8 (VAMP8), an R-SNARE found on late endosomes, could increase tau secretion. The overexpression of VAMP8 significantly increased tau secretion, decreasing its intracellular levels in the neuroblastoma (N2a) cell line. Increased tau secretion by VAMP8 was also observed in murine hippocampal slices. The intracellular reduction of tau by VAMP8 overexpression correlated to a decrease of acetylated tubulin induced by tau overexpression in N2a cells. VAMP8 staining was preferentially found on late endosomes in N2a cells. Using total internal reflection fluorescence (TIRF) microscopy, the fusion of VAMP8-positive vesicles with the plasma membrane was correlated to the depletion of tau in the cytoplasm. Finally, overexpression of VAMP8 reduced the intracellular accumulation of tau mutants linked to frontotemporal dementia with parkinsonism and α-synuclein by increasing their secretion. Collectively, the present data indicate that VAMP8 could be used to increase tau and α-synuclein clearance to prevent their intracellular accumulation. Full Article
rom Mycobacterium tuberculosis infection up-regulates MFN2 expression to promote NLRP3 inflammasome formation [Cell Biology] By www.jbc.org Published On :: 2020-12-18T00:06:18-08:00 Tuberculosis (TB), caused by the infection of Mycobacterium tuberculosis (MTB), is one of the leading causes of death worldwide, especially in children. However, the mechanisms by which MTB infects its cellular host, activates an immune response, and triggers inflammation remain unknown. Mitochondria play important roles in the initiation and activation of the nucleotide-binding oligomerization domain-like receptor with a pyrin domain 3 (NLRP3) inflammasome, where mitochondria-associated endoplasmic reticulum membranes (MAMs) may serve as the platform for inflammasome assembly and activation. Additionally, mitofusin 2 (MFN2) is implicated in the formation of MAMs, but, the roles of mitochondria and MFN2 in MTB infection have not been elucidated. Using mircroarry profiling of TB patients and in vitro MTB stimulation of macrophages, we observed an up-regulation of MFN2 in the peripheral blood mononuclear cells of active TB patients. Furthermore, we found that MTB stimulation by MTB-specific antigen ESAT-6 or lysate of MTB promoted MFN2 interaction with NLRP3 inflammasomes, resulting in the assembly and activation of the inflammasome and, subsequently, IL-1β secretion. These findings suggest that MFN2 and mitochondria play important role in the pathogen-host interaction during MTB infection. Full Article
rom Transcription factor NF-{kappa}B promotes acute lung inȷury via microRNA-99b-mediated PRDM1 down-regulation [Developmental Biology] By www.jbc.org Published On :: 2020-12-25T00:06:31-08:00 Acute lung injury (ALI), is a rapidly progressing heterogenous pulmonary disorder that possesses a high risk of mortality. Accumulating evidence has implicated the activation of the p65 subunit of NF-κB [NF-κB(p65)] activation in the pathological process of ALI. microRNAs (miRNAs), a group of small RNA molecules, have emerged as major governors due to their post-transcriptional regulation of gene expression in a wide array of pathological processes, including ALI. The dysregulation of miRNAs and NF-κB activation has been implicated in human diseases. In the current study, we set out to decipher the convergence of miR-99b and p65 NF-κB activation in ALI pathology. We measured the release of pro-inflammatory cytokines (IL-1β, IL-6, and TNFα) in bronchoalveolar lavage fluid using ELISA. MH-S cells were cultured and their viability were detected with cell counting kit 8 (CCK8) assays. The results showed that miR-99b was up-regulated, while PRDM1 was down-regulated in a lipopolysaccharide (LPS)-induced murine model of ALI. Mechanistic investigations showed that NF-κB(p65) was enriched at the miR-99b promoter region, and further promoted its transcriptional activity. Furthermore, miR-99b targeted PRDM1 by binding to its 3'UTR, causing its down-regulation. This in-creased lung injury, as evidenced by increased wet/dry ratio of mouse lung, myeloperoxidase activity and pro-inflammatory cytokine secretion, and enhanced infiltration of inflammatory cells in lung tissues. Together, our findings indicate that NF-κB(p65) promotion of miR-99b can aggravate ALI in mice by down-regulating the expression of PRDM1. Full Article
rom NSun2 promotes cell migration through methylating autotaxin mRNA [Cell Biology] By www.jbc.org Published On :: 2020-12-25T00:06:30-08:00 NSun2 is an RNA methyltransferase introducing 5-methylcytosine into tRNAs, mRNAs, and noncoding RNAs, thereby influencing the levels or function of these RNAs. Autotaxin (ATX) is a secreted glycoprotein and is recognized as a key factor in converting lysophosphatidylcholine into lysophosphatidic acid (LPA). The ATX-LPA axis exerts multiple biological effects in cell survival, migration, proliferation, and differentiation. Here, we show that NSun2 is involved in the regulation of cell migration through methylating ATX mRNA. In the human glioma cell line U87, knockdown of NSun2 decreased ATX protein levels, whereas overexpression of NSun2 elevated ATX protein levels. However, neither overexpression nor knockdown of NSun2 altered ATX mRNA levels. Further studies revealed that NSun2 methylated the 3'-UTR of ATX mRNA at cytosine 2756 in vitro and in vivo. Methylation by NSun2 enhanced ATX mRNA translation. In addition, NSun2-mediated 5-methylcytosine methylation promoted the export of ATX mRNA from nucleus to cytoplasm in an ALYREF-dependent manner. Knockdown of NSun2 suppressed the migration of U87 cells, which was rescued by the addition of LPA. In summary, we identify NSun2-mediated methylation of ATX mRNA as a novel mechanism in the regulation of ATX. Full Article
rom PDE5 inhibition rescues mitochondrial dysfunction and angiogenic responses induced by Akt3 inhibition by promotion of PRC expression [Bioenergetics] By www.jbc.org Published On :: 2020-12-25T00:06:30-08:00 Akt3 regulates mitochondrial content in endothelial cells through the inhibition of PGC-1α nuclear localization and is also required for angiogenesis. However, whether there is a direct link between mitochondrial function and angiogenesis is unknown. Here we show that Akt3 depletion in primary endothelial cells results in decreased uncoupled oxygen consumption, increased fission, decreased membrane potential, and increased expression of the mitochondria-specific protein chaperones, HSP60 and HSP10, suggesting that Akt3 is required for mitochondrial homeostasis. Direct inhibition of mitochondrial homeostasis by the model oxidant paraquat results in decreased angiogenesis, showing a direct link between angiogenesis and mitochondrial function. Next, in exploring functional links to PGC-1α, the master regulator of mitochondrial biogenesis, we searched for compounds that induce this process. We found that, sildenafil, a phosphodiesterase 5 inhibitor, induced mitochondrial biogenesis as measured by increased uncoupled oxygen consumption, mitochondrial DNA content, and voltage-dependent anion channel protein expression. Sildenafil rescued the effects on mitochondria by Akt3 depletion or pharmacological inhibition and promoted angiogenesis, further supporting that mitochondrial homeostasis is required for angiogenesis. Sildenafil also induces the expression of PGC-1 family member PRC and can compensate for PGC-1α activity during mitochondrial stress by an Akt3-independent mechanism. The induction of PRC by sildenafil depends upon cAMP and the transcription factor CREB. Thus, PRC can functionally substitute during Akt3 depletion for absent PGC-1α activity to restore mitochondrial homeostasis and promote angiogenesis. These findings show that mitochondrial homeostasis as controlled by the PGC family of transcriptional activators is required for angiogenic responses. Full Article
rom HIV-1 Gag release from yeast reveals ESCRT interaction with the Gag N-terminal protein region [Molecular Bases of Disease] By www.jbc.org Published On :: 2020-12-25T00:06:30-08:00 The HIV-1 protein Gag assembles at the plasma membrane and drives virion budding, assisted by the cellular endosomal complex required for transport (ESCRT) proteins. Two ESCRT proteins, TSG101 and ALIX, bind to the Gag C-terminal p6 peptide. TSG101 binding is important for efficient HIV-1 release, but how ESCRTs contribute to the budding process and how their activity is coordinated with Gag assembly is poorly understood. Yeast, allowing genetic manipulation that is not easily available in human cells, has been used to characterize the cellular ESCRT function. Previous work reported Gag budding from yeast spheroplasts, but Gag release was ESCRT-independent. We developed a yeast model for ESCRT-dependent Gag release. We combined yeast genetics and Gag mutational analysis with Gag-ESCRT binding studies and the characterization of Gag-plasma membrane binding and Gag release. With our system, we identified a previously unknown interaction between ESCRT proteins and the Gag N-terminal protein region. Mutations in the Gag-plasma membrane–binding matrix domain that reduced Gag-ESCRT binding increased Gag-plasma membrane binding and Gag release. ESCRT knockout mutants showed that the release enhancement was an ESCRT-dependent effect. Similarly, matrix mutation enhanced Gag release from human HEK293 cells. Release enhancement partly depended on ALIX binding to p6, although binding site mutation did not impair WT Gag release. Accordingly, the relative affinity for matrix compared with p6 in GST-pulldown experiments was higher for ALIX than for TSG101. We suggest that a transient matrix-ESCRT interaction is replaced when Gag binds to the plasma membrane. This step may activate ESCRT proteins and thereby coordinate ESCRT function with virion assembly. Full Article
rom Hsa-miRNA-23a-3p promotes atherogenesis in a novel mouse model of atherosclerosis By www.jlr.org Published On :: 2020-12-01 Jiayan GuoDec 1, 2020; 61:1764-1775Research Articles Full Article
rom A novel phosphoglycerol serine-glycine lipodipeptide of Porphyromonas gingivalis is a TLR2 ligand By www.jlr.org Published On :: 2020-12-01 Frank C. NicholsDec 1, 2020; 61:1645-1657Research Articles Full Article
rom Spatial profiling of gangliosides in mouse brain by mass spectrometry imaging By www.jlr.org Published On :: 2020-12-01 Douglas A. AndresDec 1, 2020; 61:1537-1537Images in Lipid Research Full Article
rom Lipid signature of advanced human carotid atherosclerosis assessed by mass spectrometry imaging By www.jlr.org Published On :: 2020-12-23 Astrid M. MoermanDec 23, 2020; 0:jlr.RA120000974v1-jlr.RA120000974Research Articles Full Article
rom Identification of unusual phospholipids from bovine heart mitochondria by HPLC-MS/MS By www.jlr.org Published On :: 2020-12-01 Junhwan KimDec 1, 2020; 61:1707-1719Research Articles Full Article
rom Membrane-bound sn-1,2-diacylglycerols explain the dissociation of hepatic insulin resistance from hepatic steatosis in MTTP knockout mice By www.jlr.org Published On :: 2020-12-01 Abudukadier AbuliziDec 1, 2020; 61:1565-1576Research Articles Full Article
rom SCD1 promotes lipid mobilization in subcutaneous white adipose tissue By www.jlr.org Published On :: 2020-12-01 Ying ZouDec 1, 2020; 61:1589-1604Research Articles Full Article
rom Generation and validation of a conditional knockout mouse model for the study of the Smith-Lemli-Opitz Syndrome By www.jlr.org Published On :: 2020-11-17 Babunageswararao KanuriNov 17, 2020; 0:jlr.RA120001101v1-jlr.RA120001101Research Articles Full Article
rom Mass spectrometry characterization of light chain fragmentation sites in cardiac AL amyloidosis: insights into the timing of proteolysis [Genomics and Proteomics] By www.jbc.org Published On :: 2020-12-04T00:06:05-08:00 Amyloid fibrils are polymeric structures originating from aggregation of misfolded proteins. In vivo, proteolysis may modulate amyloidogenesis and fibril stability. In light chain (AL) amyloidosis, fragmented light chains (LCs) are abundant components of amyloid deposits; however, site and timing of proteolysis are debated. Identification of the N and C termini of LC fragments is instrumental to understanding involved processes and enzymes. We investigated the N and C terminome of the LC proteoforms in fibrils extracted from the hearts of two AL cardiomyopathy patients, using a proteomic approach based on derivatization of N- and C-terminal residues, followed by mapping of fragmentation sites on the structures of native and fibrillar relevant LCs. We provide the first high-specificity map of proteolytic cleavages in natural AL amyloid. Proteolysis occurs both on the LC variable and constant domains, generating a complex fragmentation pattern. The structural analysis indicates extensive remodeling by multiple proteases, largely taking place on poorly folded regions of the fibril surfaces. This study adds novel important knowledge on amyloid LC processing: although our data do not exclude that proteolysis of native LC dimers may destabilize their structure and favor fibril formation, the data show that LC deposition largely precedes the proteolytic events documentable in mature AL fibrils. Full Article
rom Problem Notes for SAS®9 - 66537: SAS Customer Intelligence Studio becomes non-responsive when you delete a calculated variable from the Edit Value dialog box By Published On :: Tue, 1 Sep 2020 14:25:38 EST In SAS Customer Intelligence Studio, you might notice that the user interface becomes unresponsive, as shown below: imgalt="SAS Customer Intelligence Studio UI becomes unresponsive" src="{fusion_66537 Full Article CAMPAIGNSDO+SAS+Customer+Intelligence+St
rom Problem Notes for SAS®9 - 33449: An error might occur when you use SAS 9 BULKLOAD= and BULKEXTRACT= options to load data to or extract data from the HP Neoview database on the HP Itanium platform By Published On :: Wed, 26 Aug 2020 16:21:08 EST An error might occur when you use the SAS 9 BULKLOAD= and BULKEXTRACT= options load data to or extract data from HP Neoview on the HP Itanium platform. The problem occurs because Hewlett-Packard changed the name of one of Full Article NEOVIEW+SAS/ACCESS+Interface+to+HP+Neovi
rom WITHDRAWN: Structural and mechanistic studies of hydroperoxide conversions catalyzed by a CYP74 clan epoxy alcohol synthase from amphioxus (Branchiostoma floridae) [Research Articles] By www.jlr.org Published On :: 2014-03-04T09:59:12-08:00 This manuscript has been withdrawn by the Author. Full Article
rom Lipid and Metabolic Syndrome Traits in Coronary Artery Disease: A Mendelian Randomization Study [Patient-Oriented and Epidemiological Research] By www.jlr.org Published On :: 2020-09-09T12:33:17-07:00 Mendelian randomization (MR) of lipid traits in coronary artery disease (CAD) has provided evidence for causal associations of low-density lipoprotein cholesterol (LDL-C) and triglycerides (TG) in CAD, but many lipid trait genetic variants have pleiotropic effects on other cardiovascular risk factors that may bias MR associations. The goal of this study was to evaluate pleiotropic effects of lipid trait genetic variants and to account for these effects in MR of lipid traits in CAD. We performed multivariable MR using inverse variance-weighted (IVW) and MR-Egger methods in large (n ≥ 300,000) GWAS datasets. We found that 30% of lipid trait genetic variants have effects on metabolic syndrome traits, including body mass index (BMI), type 2 diabetes (T2D), and systolic blood pressure (SBP). Nonetheless, in multivariable MR analysis, LDL-C, high-density lipoprotein cholesterol (HDL-C), TG, BMI, T2D, and SBP are independently associated with CAD, and each of these associations is robust to adjustment for directional pleiotropy. MR at loci linked to direct effects on HDL-C and TG suggests locus- and mechanism-specific causal effects of these factors on CAD. Full Article
rom Generation and validation of a conditional knockout mouse model for the study of the Smith-Lemli-Opitz Syndrome [Research Articles] By www.jlr.org Published On :: 2020-11-17T11:30:28-08:00 Smith-Lemli-Opitz Syndrome (SLOS) is a developmental disorder (OMIM #270400) caused by autosomal recessive mutations in the Dhcr7 gene, which encodes the enzyme 3β-hydroxysterol-7 reductase. SLOS patients present clinically with dysmorphology and neurological, behavioral and cognitive defects, with characteristically elevated levels of 7-dehydrocholesterol (7-DHC) in all bodily tissues and fluids. Previous mouse models of SLOS have been hampered by postnatal lethality when Dhcr7 is knocked out globally, while a hypomorphic mouse model showed improvement in the biochemical phenotype with ageing, and did not manifest most other characteristic features of SLOS. We report the generation of a conditional knockout of Dhcr7 (Dhcr7flx/flx), validated by generating a mouse with a liver-specific deletion (Dhcr7L-KO). Phenotypic characterization of liver-specific knockout mice revealed no significant changes in viability, fertility, growth curves, liver architecture, hepatic triglyceride secretion, or parameters of systemic glucose homeostasis. Furthermore, qPCR and RNA-Seq analyses of livers revealed no perturbations in pathways responsible for cholesterol synthesis, either in male or female Dhcr7L-KO mice, suggesting hepatic disruption of post-squalene cholesterol synthesis leads to minimal impact on sterol metabolism in the liver. This validated conditional Dhcr7 knockout model may now allow us to systematically explore the pathophysiology of SLOS, by allowing for temporal, cell and tissue-specific loss of DHCR7. Full Article
rom Lipid signature of advanced human carotid atherosclerosis assessed by mass spectrometry imaging [Research Articles] By www.jlr.org Published On :: 2020-12-23T12:30:44-08:00 Carotid atherosclerosis is a risk factor for ischemic stroke, one of the main causes of mortality and disability worldwide. The disease is characterized by plaques, heterogeneous deposits of lipids and necrotic debris in the vascular wall, which grow gradually and may remain asymptomatic for decades. However, at some point a plaque can evolve to a high-risk plaque phenotype, which may trigger a cerebrovascular event. Lipids play a key role in the development and progression of atherosclerosis, but the nature of their involvement is not fully understood. Using matrix-assisted laser desorption/ionization mass spectrometry imaging, we visualized the distribution of approximately 200 different lipid signals, originating of > 90 uniquely assigned species, in 106 tissue sections of 12 human carotid atherosclerotic plaques. We performed unsupervised classification of the mass spectrometry dataset, as well as a histology-directed multivariate analysis. These data allowed us to extract the spatial lipid patterns associated with morphological plaque features in advanced plaques from a symptomatic population, revealing spatial lipid patterns in atherosclerosis and their relation to histological tissue type. The abundances of sphingomyelin and oxidized cholesteryl ester species were elevated specifically in necrotic intima areas, while diacylglycerols and triacylglycerols were spatially correlated to areas containing the coagulation protein fibrin. These results demonstrate a clear co-localization between plaque features and specific lipid classes, as well as individual lipid species in high-risk atherosclerotic plaques. Full Article
rom Chylomicronemia from GPIHBP1 autoantibodies [Reviews] By www.jlr.org Published On :: 2020-11-01T00:05:43-07:00 Some cases of chylomicronemia are caused by autoantibodies against glycosylphosphatidylinositol-anchored HDL binding protein 1 (GPIHBP1), an endothelial cell protein that shuttles LPL to the capillary lumen. GPIHBP1 autoantibodies prevent binding and transport of LPL by GPIHBP1, thereby disrupting the lipolytic processing of triglyceride-rich lipoproteins. Here, we review the "GPIHBP1 autoantibody syndrome" and summarize clinical and laboratory findings in 22 patients. All patients had GPIHBP1 autoantibodies and chylomicronemia, but we did not find a correlation between triglyceride levels and autoantibody levels. Many of the patients had a history of pancreatitis, and most had clinical and/or serological evidence of autoimmune disease. IgA autoantibodies were present in all patients, and IgG4 autoantibodies were present in 19 of 22 patients. Patients with GPIHBP1 autoantibodies had low plasma LPL levels, consistent with impaired delivery of LPL into capillaries. Plasma levels of GPIHBP1, measured with a monoclonal antibody–based ELISA, were very low in 17 patients, reflecting the inability of the ELISA to detect GPIHBP1 in the presence of autoantibodies (immunoassay interference). However, GPIHBP1 levels were very high in five patients, indicating little capacity of their autoantibodies to interfere with the ELISA. Recently, several GPIHBP1 autoantibody syndrome patients were treated successfully with rituximab, resulting in the disappearance of GPIHBP1 autoantibodies and normalization of both plasma triglyceride and LPL levels. The GPIHBP1 autoantibody syndrome should be considered in any patient with newly acquired and unexplained chylomicronemia. Full Article
rom Hsa-miRNA-23a-3p promotes atherogenesis in a novel mouse model of atherosclerosis [Research Articles] By www.jlr.org Published On :: 2020-12-01T00:05:39-08:00 Of the known regulators of atherosclerosis, miRNAs have been demonstrated to play critical roles in lipoprotein homeostasis and plaque formation. Here, we generated a novel animal model of atherosclerosis by knocking in LDLRW483X in C57BL/6 mice, as the W483X mutation in LDLR is considered the most common newly identified pathogenic mutation in Chinese familial hypercholesterolemia (FH) individuals. Using the new in vivo mouse model combined with a well-established atherosclerotic in vitro human cell model, we identified a novel atherosclerosis-related miRNA, miR-23a-3p, by microarray analysis of mouse aortic tissue specimens and human aortic endothelial cells (HAECs). miR-23a-3p was consistently downregulated in both models, which was confirmed by qPCR. Bioinformatics analysis and further validation experiments revealed that the TNFα-induced protein 3 (TNFAIP3) gene was the key target of miR-23a-3p. The miR-23a-3p-related functional pathways were then analyzed in HAECs. Collectively, the present results suggest that miR-23a-3p regulates inflammatory and apoptotic pathways in atherogenesis by targeting TNFAIP3 through the NF-B and p38/MAPK signaling pathways. Full Article
rom Identification of unusual phospholipids from bovine heart mitochondria by HPLC-MS/MS [Research Articles] By www.jlr.org Published On :: 2020-12-01T00:05:39-08:00 Phospholipids, including ether phospholipids, are composed of numerous isomeric and isobaric species that have the same backbone and acyl chains. This structural resemblance results in similar fragmentation patterns by collision-induced dissociation of phospholipids regardless of class, yielding complicated MS/MS spectra when isobaric species are analyzed together. Furthermore, the presence of isobaric species can lead to misassignment of species when made solely based on their molecular weights. In this study, we used normal-phase HPLC for ESI-MS/MS analysis of phospholipids from bovine heart mitochondria. Class separation by HPLC eliminates chances for misidentification of isobaric species from different classes of phospholipids. Chromatography yields simple MS/MS spectra without interference from isobaric species, allowing clear identification of peaks corresponding to fragmented ions containing monoacylglycerol backbone derived from losing one acyl chain. Using these fragmented ions, we characterized individual and isomeric species in each class of mitochondrial phospholipids, including unusual species, such as PS, containing an ether linkage and species containing odd-numbered acyl chains in cardiolipin, PS, PI, and PG. We also characterized monolysocardiolipin and dilysocardiolipin, the least abundant but nevertheless important mitochondrial phospholipids. The results clearly show the power of HPLC-MS/MS for identification and characterization of phospholipids, including minor species. Full Article
rom A novel phosphoglycerol serine-glycine lipodipeptide of Porphyromonas gingivalis is a TLR2 ligand [Research Articles] By www.jlr.org Published On :: 2020-12-01T00:05:39-08:00 Porphyromonas gingivalis is a Gram-negative anaerobic periodontal microorganism strongly associated with tissue-destructive processes in human periodontitis. Following oral infection with P. gingivalis, the periodontal bone loss in mice is reported to require the engagement of Toll-like receptor 2 (TLR2). Serine-glycine lipodipeptide or glycine aminolipid classes of P. gingivalis engage human and mouse TLR2, but a novel lipid class reported here is considerably more potent in engaging TLR2 and the heterodimer receptor TLR2/TLR6. The novel lipid class, termed Lipid 1256, consists of a diacylated phosphoglycerol moiety linked to a serine-glycine lipodipeptide previously termed Lipid 654. Lipid 1256 is approximately 50-fold more potent in engaging TLR2 than the previously reported serine-glycine lipid classes. Lipid 1256 also stimulates cytokine secretory responses from peripheral blood monocytes and is recovered in selected oral and intestinal Bacteroidetes organisms. Therefore, these findings suggest that Lipid 1256 may be a microbial TLR2 ligand relevant to chronic periodontitis in humans. Full Article
rom SCD1 promotes lipid mobilization in subcutaneous white adipose tissue [Research Articles] By www.jlr.org Published On :: 2020-12-01T00:05:39-08:00 Beiging of white adipose tissue (WAT) has beneficial effects on metabolism. Although it is known that beige adipocytes are active in lipid catabolism and thermogenesis, how they are regulated deserves more explorations. In this study, we demonstrate that stearoyl-CoA desaturase 1 (SCD1) in subcutaneous WAT (scWAT) responded to cold stimulation and was able to promote mobilization of triacylglycerol [TAG (triglyceride)]. In vitro studies showed that SCD1 promoted lipolysis in C3H10T1/2 white adipocytes. The lipolytic effect was contributed by one of SCD1’s products, oleic acid (OA). OA upregulated adipose TAG lipase and hormone-sensitive lipase expression. When SCD1 was overexpressed in the scWAT of mice, lipolysis was enhanced, and oxygen consumption and heat generation were increased. These effects were also demonstrated by the SCD1 knockdown experiments in mice. In conclusion, our study suggests that SCD1, known as an enzyme for lipid synthesis, plays a role in upregulating lipid mobilization through its desaturation product, OA. Full Article
rom Membrane-bound sn-1,2-diacylglycerols explain the dissociation of hepatic insulin resistance from hepatic steatosis in MTTP knockout mice [Research Articles] By www.jlr.org Published On :: 2020-12-01T00:05:39-08:00 Microsomal triglyceride transfer protein (MTTP) deficiency results in a syndrome of hypolipidemia and accelerated NAFLD. Animal models of decreased hepatic MTTP activity have revealed an unexplained dissociation between hepatic steatosis and hepatic insulin resistance. Here, we performed comprehensive metabolic phenotyping of liver-specific MTTP knockout (L-Mttp–/–) mice and age-weight matched wild-type control mice. Young (10–12-week-old) L-Mttp–/– mice exhibited hepatic steatosis and increased DAG content; however, the increase in hepatic DAG content was partitioned to the lipid droplet and was not increased in the plasma membrane. Young L-Mttp–/– mice also manifested normal hepatic insulin sensitivity, as assessed by hyperinsulinemic-euglycemic clamps, no PKC activation, and normal hepatic insulin signaling from the insulin receptor through AKT Ser/Thr kinase. In contrast, aged (10-month-old) L-Mttp–/– mice exhibited glucose intolerance and hepatic insulin resistance along with an increase in hepatic plasma membrane sn-1,2-DAG content and PKC activation. Treatment with a functionally liver-targeted mitochondrial uncoupler protected the aged L-Mttp–/– mice against the development of hepatic steatosis, increased plasma membrane sn-1,2-DAG content, PKC activation, and hepatic insulin resistance. Furthermore, increased hepatic insulin sensitivity in the aged controlled-release mitochondrial protonophore-treated L-Mttp–/– mice was not associated with any reductions in hepatic ceramide content. Taken together, these data demonstrate that differences in the intracellular compartmentation of sn-1,2-DAGs in the lipid droplet versus plasma membrane explains the dissociation of NAFLD/lipid-induced hepatic insulin resistance in young L-Mttp–/– mice as well as the development of lipid-induced hepatic insulin resistance in aged L-Mttp–/– mice. Full Article
rom Spatial profiling of gangliosides in mouse brain by mass spectrometry imaging [Images In Lipid Research] By www.jlr.org Published On :: 2020-12-01T00:05:39-08:00 Full Article
rom Conserved biophysical features of the CaV2 presynaptic Ca2+ channel homologue from the early-diverging animal Trichoplax adhaerens [Membrane Biology] By www.jbc.org Published On :: 2020-12-25T00:06:31-08:00 The dominant role of CaV2 voltage-gated calcium channels for driving neurotransmitter release is broadly conserved. Given the overlapping functional properties of CaV2 and CaV1 channels, and less so CaV3 channels, it is unclear why there have not been major shifts toward dependence on other CaV channels for synaptic transmission. Here, we provide a structural and functional profile of the CaV2 channel cloned from the early-diverging animal Trichoplax adhaerens, which lacks a nervous system but possesses single gene homologues for CaV1–CaV3 channels. Remarkably, the highly divergent channel possesses similar features as human CaV2.1 and other CaV2 channels, including high voltage–activated currents that are larger in external Ba2+ than in Ca2+; voltage-dependent kinetics of activation, inactivation, and deactivation; and bimodal recovery from inactivation. Altogether, the functional profile of Trichoplax CaV2 suggests that the core features of presynaptic CaV2 channels were established early during animal evolution, after CaV1 and CaV2 channels emerged via proposed gene duplication from an ancestral CaV1/2 type channel. The Trichoplax channel was relatively insensitive to mammalian CaV2 channel blockers ω-agatoxin-IVA and ω-conotoxin-GVIA and to metal cation blockers Cd2+ and Ni2+. Also absent was the capacity for voltage-dependent G-protein inhibition by co-expressed Trichoplax Gβγ subunits, which nevertheless inhibited the human CaV2.1 channel, suggesting that this modulatory capacity evolved via changes in channel sequence/structure, and not G proteins. Last, the Trichoplax channel was immunolocalized in cells that express an endomorphin-like peptide implicated in cell signaling and locomotive behavior and other likely secretory cells, suggesting contributions to regulated exocytosis. Full Article
rom The Insulin Receptor Adaptor IRS2 is an APC/C Substrate That Promotes Cell Cycle Protein Expression and a Robust Spindle Assembly Checkpoint [Research] By www.mcponline.org Published On :: 2020-09-01T00:05:24-07:00 Insulin receptor substrate 2 (IRS2) is an essential adaptor that mediates signaling downstream of the insulin receptor and other receptor tyrosine kinases. Transduction through IRS2-dependent pathways is important for coordinating metabolic homeostasis, and dysregulation of IRS2 causes systemic insulin signaling defects. Despite the importance of maintaining proper IRS2 abundance, little is known about what factors mediate its protein stability. We conducted an unbiased proteomic screen to uncover novel substrates of the Anaphase Promoting Complex/Cyclosome (APC/C), a ubiquitin ligase that controls the abundance of key cell cycle regulators. We found that IRS2 levels are regulated by APC/C activity and that IRS2 is a direct APC/C target in G1. Consistent with the APC/C's role in degrading cell cycle regulators, quantitative proteomic analysis of IRS2-null cells revealed a deficiency in proteins involved in cell cycle progression. We further show that cells lacking IRS2 display a weakened spindle assembly checkpoint in cells treated with microtubule inhibitors. Together, these findings reveal a new pathway for IRS2 turnover and indicate that IRS2 is a component of the cell cycle control system in addition to acting as an essential metabolic regulator. Full Article
rom Benefits of Collisional Cross Section Assisted Precursor Selection (caps-PASEF) for Cross-linking Mass Spectrometry [Research] By www.mcponline.org Published On :: 2020-10-01T00:05:25-07:00 Ion mobility separates molecules in the gas-phase based on their physico-chemical properties, providing information about their size as collisional cross-sections. The timsTOF Pro combines trapped ion mobility with a quadrupole, collision cell and a TOF mass analyzer, to probe ions at high speeds with on-the-fly fragmentation. Here, we show that on this platform ion mobility is beneficial for cross-linking MS (XL-MS). Cross-linking reagents covalently link amino acids in proximity, resulting in peptide pairs after proteolytic digestion. These cross-linked peptides are typically present at low abundance in the background of normal peptides, which can partially be resolved by using enrichable cross-linking reagents. Even with a very efficient enrichable cross-linking reagent, like PhoX, the analysis of cross-linked peptides is still hampered by the co-enrichment of peptides connected to a partially hydrolyzed reagent – termed mono-linked peptides. For experiments aiming to uncover protein-protein interactions these are unwanted byproducts. Here, we demonstrate that gas-phase separation by ion mobility enables the separation of mono-linked peptides from cross-linked peptide pairs. A clear partition between these two classes is observed at a CCS of 500 Å2 and a monoisotopic mass of 2 kDa, which can be used for targeted precursor selection. A total of 50-70% of the mono-linked peptides are prevented from sequencing, allowing the analysis to focus on sequencing the relevant cross-linked peptide pairs. In applications to both simple proteins and protein mixtures and a complete highly complex lysate this approach provides a substantial increase in detected cross-linked peptides. Full Article