rt Courtney J. Fung By feedproxy.google.com Published On :: Thu, 06 Feb 2020 16:39:07 +0000 Associate Fellow, Asia-Pacific Programme Biography Courtney is an assistant professor of international relations at the University of Hong Kong and an associate-in-research at the Fairbank Center for Chinese Studies at Harvard University.Her research focuses on how rising powers, like China and India, address the norms and provisions for a global security order. She is the author of China and Intervention at the UN Security Council: Reconciling Status (Oxford University Press, 2019).She holds a PhD in International Relations from The Fletcher School of Law and Diplomacy, Tufts University. Areas of expertise China’s international relationsGlobal governanceRising powers – China and IndiaUnited Nations politics Past experience 2019 - presentAssociate in Research, Fairbank Center for Chinese Studies, Harvard University2013 - presentAssistant Professor of International Relations, University of Hong Kong2012-13Post-Doctoral Research Fellow, Columbia-Harvard China and the World Program, Harvard University2011-12Research Fellow, International Security Program, The Belfer Center for Science & International Affairs, Harvard University2009-12Fellow, Program on Global Peace Operations, Center on International Cooperation, New York University +852 3917 5223 Email @courtneyfung LinkedIn Google Scholar Full Article
rt Virtual Roundtable: US-China Geopolitics and the Global Pandemic By feedproxy.google.com Published On :: Fri, 27 Mar 2020 12:50:01 +0000 Invitation Only Research Event 2 April 2020 - 2:00pm to 3:00pm Event participants Dr Kurt Campbell, Chairman, CEO and Co-Founder, The Asia Group; Assistant Secretary of State for East Asian and Pacific Affairs, 2009-13Chair: Dr Leslie Vinjamuri, Director, US and the Americas Programme, Chatham House This event is part of the Inaugural Virtual Roundtable Series on the US, Americas and the State of the World and will take place virtually only. Participants should not come to Chatham House for these events. Department/project US and the Americas Programme US and Americas Programme Email Full Article
rt Virtual Roundtable: The Economic Implications of COVID-19 on Asia By feedproxy.google.com Published On :: Fri, 27 Mar 2020 16:35:01 +0000 Research Event 2 April 2020 - 11:00am to 12:00pm Chatham House | 10 St James's Square | London | SW1Y 4LE Event participants Vasuki Shastry, Associate Fellow, Asia-Pacific ProgrammeRavi Velloor, Associate Editor, The Straits TimesChair: Yu Jie, Senior Research Fellow on China, Asia-Pacific Programme, Chatham House The COVID-19 pandemic is likely to have a damaging economic impact on Asia, potentially the most serious since the financial crisis two decades ago. While early estimates suggest that a recession is inevitable, differing countries in Asia are generally deploying modest fiscal and monetary measures. This is true even in China, compared with the ‘whatever it takes’ approach pursued by Europe and America. How effective will these measures be in reviving growth and in easing the pain, particularly on the poor in developing countries in Asia? Is Asia witnessing a sudden but temporary halt in economic activity rather than a prolonged slowdown? At this virtual roundtable, the speakers will consider the likelihood of a recovery for trade in the region and will explore what lessons can be learned from countries like Singapore, who seem to be successfully managing the health and economic aspects of COVID-19. This event is online only. After registering, you will receive a follow-up confirmation email with details of how to join the webinar. Event attributes Chatham House Rule Department/project Asia-Pacific Programme, Geopolitics and Governance, Sustainable and Inclusive Growth, Technology and Society, Trade, Investment and Economics Lucy Ridout Programme Administrator, Asia-Pacific Programme +44 (0) 207 314 2761 Email Full Article
rt Virtual Roundtable: Evaluating Outcomes in Fragile Contexts: Adapting Research Methods in the Time of COVID-19 By feedproxy.google.com Published On :: Mon, 04 May 2020 08:55:01 +0000 Invitation Only Research Event 5 May 2020 - 12:00pm to 1:00pm Agendapdf | 107.59 KB Event participants Rebecca Wolfe, Lecturer, Harris School for Public Policy and Associate, Pearson Institute for the Study and Resolution of Global Conflicts, University of ChicagoTom Gillhespy, Principal Consultant, ItadShodmon Hojibekov, Chief Executive Officer, Aga Khan Agency for Habitat (Afghanistan)Chair: Champa Patel, Director, Asia-Pacific Programme, Chatham House This virtual roundtable has been co-convened by Chatham House and the Aga Khan Foundation. While conducting research in fragile and conflict-affected contexts has always presented challenges, the outbreak of COVID-19 creates additional challenges including travel restrictions, ethical challenges, and disruptions to usual modes of working. This virtual roundtable will explore how organizations can adapt their research and monitoring and evaluation models in response to the coronavirus pandemic. This event aims to discuss the research methods being used to mitigate the impact of the COVID-19 crisis; the important role of technology; and ways to engage policy and decision-makers during this time. Event attributes Chatham House Rule Department/project Asia-Pacific Programme, Conflict, Peace and Stability, Geopolitics and Governance Lucy Ridout Programme Administrator, Asia-Pacific Programme +44 (0) 207 314 2761 Email Full Article
rt Unearthing Power Lines By www.ams.org Published On :: Thu, 14 Feb 2008 09:38:47 -0500 Votes are cast by the full membership in each house of Congress, but much of the important maneuvering occurs in committees. Graph theory and linear algebra are two mathematics subjects that have revealed a level of organization in Congress groups of committees above the known levels of subcommittees and committees. The result is based on strong connections between certain committees that can be detected by examining their memberships, but which were virtually unknown until uncovered by mathematical analysis. Mathematics has also been applied to individual congressional voting records. Each legislator.s record is represented in a matrix whose larger dimension is the number of votes cast (which in a House term is approximately 1000). Using eigenvalues and eigenvectors, researchers have shown that the entire collection of votes for a particular Congress can be approximated very well by a two-dimensional space. Thus, for example, in almost all cases the success or failure of a bill can be predicted from information derived from two coordinates. Consequently it turns out that some of the values important in Washington are, in fact, eigenvalues. For More Information: Porter, Mason A; Mucha, Peter J.; Newman, M. E. J.; and Warmbrand, Casey M., A Network Analysis of Committees in the United States House of Representatives, Proceedings of the National Academy of Sciences, Vol. 102 [2005], No. 20, pp. 7057-7062. Full Article
rt Going with the Floes - Part 4 By www.ams.org Published On :: Thu, 5 Jun 2008 13:47:00 -0400 Sea ice is one of the least understood components of our climate. Naturally its abundance or scarcity is a telling sign of climate change, but sea ice is also an important actor in change as well, insulating the ocean and reflecting sunlight. A branch of mathematics called percolation theory helps explain how salt water travels through sea ice, a process that is crucial both to the amount of sea ice present and to the microscopic communities that sustain polar ecosystems. By taking samples, doing on-site experiments, and then incorporating the data into models of porous materials, mathematicians are working to understand sea ice and help refine climate predictions. Using probability, numerical analysis, and partial differential equations, researchers have recently shown that the permeability of sea ice is similar to that of some sedimentary rocks in the earth.s crust, even though the substances are otherwise dissimilar. One major difference between the two is the drastic changes in permeability of sea ice, from total blockage to clear passage, that occur over a range of just a few degrees. This difference can have a major effect on measurements by satellite, which provide information on the extent and thickness of sea ice. Results about sea ice will not only make satellite measurements more reliable, but they can also be applied to descriptions of lung and bone porosity, and to understanding ice on other planets. Image: Pancake ice in Antarctica, courtesy of Ken Golden. For More Information: "Thermal evolution of permeability and microstructure in sea ice," K. M. Golden, et al., Geophysical Research Letters, August 28, 2007. Full Article
rt Going with the Floes - Part 3 By www.ams.org Published On :: Thu, 5 Jun 2008 13:46:14 -0400 Sea ice is one of the least understood components of our climate. Naturally its abundance or scarcity is a telling sign of climate change, but sea ice is also an important actor in change as well, insulating the ocean and reflecting sunlight. A branch of mathematics called percolation theory helps explain how salt water travels through sea ice, a process that is crucial both to the amount of sea ice present and to the microscopic communities that sustain polar ecosystems. By taking samples, doing on-site experiments, and then incorporating the data into models of porous materials, mathematicians are working to understand sea ice and help refine climate predictions. Using probability, numerical analysis, and partial differential equations, researchers have recently shown that the permeability of sea ice is similar to that of some sedimentary rocks in the earth.s crust, even though the substances are otherwise dissimilar. One major difference between the two is the drastic changes in permeability of sea ice, from total blockage to clear passage, that occur over a range of just a few degrees. This difference can have a major effect on measurements by satellite, which provide information on the extent and thickness of sea ice. Results about sea ice will not only make satellite measurements more reliable, but they can also be applied to descriptions of lung and bone porosity, and to understanding ice on other planets. Image: Pancake ice in Antarctica, courtesy of Ken Golden. For More Information: "Thermal evolution of permeability and microstructure in sea ice," K. M. Golden, et al., Geophysical Research Letters, August 28, 2007. Full Article
rt Going with the Floes - Part 2 By www.ams.org Published On :: Thu, 5 Jun 2008 13:25:01 -0400 Sea ice is one of the least understood components of our climate. Naturally its abundance or scarcity is a telling sign of climate change, but sea ice is also an important actor in change as well, insulating the ocean and reflecting sunlight. A branch of mathematics called percolation theory helps explain how salt water travels through sea ice, a process that is crucial both to the amount of sea ice present and to the microscopic communities that sustain polar ecosystems. By taking samples, doing on-site experiments, and then incorporating the data into models of porous materials, mathematicians are working to understand sea ice and help refine climate predictions. Using probability, numerical analysis, and partial differential equations, researchers have recently shown that the permeability of sea ice is similar to that of some sedimentary rocks in the earth.s crust, even though the substances are otherwise dissimilar. One major difference between the two is the drastic changes in permeability of sea ice, from total blockage to clear passage, that occur over a range of just a few degrees. This difference can have a major effect on measurements by satellite, which provide information on the extent and thickness of sea ice. Results about sea ice will not only make satellite measurements more reliable, but they can also be applied to descriptions of lung and bone porosity, and to understanding ice on other planets. Image: Pancake ice in Antarctica, courtesy of Ken Golden. For More Information: "Thermal evolution of permeability and microstructure in sea ice," K. M. Golden, et al., Geophysical Research Letters, August 28, 2007. Full Article
rt Going with the Floes - Part 1 By www.ams.org Published On :: Thu, 5 Jun 2008 13:45:02 -0400 Sea ice is one of the least understood components of our climate. Naturally its abundance or scarcity is a telling sign of climate change, but sea ice is also an important actor in change as well, insulating the ocean and reflecting sunlight. A branch of mathematics called percolation theory helps explain how salt water travels through sea ice, a process that is crucial both to the amount of sea ice present and to the microscopic communities that sustain polar ecosystems. By taking samples, doing on-site experiments, and then incorporating the data into models of porous materials, mathematicians are working to understand sea ice and help refine climate predictions. Using probability, numerical analysis, and partial differential equations, researchers have recently shown that the permeability of sea ice is similar to that of some sedimentary rocks in the earth.s crust, even though the substances are otherwise dissimilar. One major difference between the two is the drastic changes in permeability of sea ice, from total blockage to clear passage, that occur over a range of just a few degrees. This difference can have a major effect on measurements by satellite, which provide information on the extent and thickness of sea ice. Results about sea ice will not only make satellite measurements more reliable, but they can also be applied to descriptions of lung and bone porosity, and to understanding ice on other planets. Image: Pancake ice in Antarctica, courtesy of Ken Golden. For More Information: "Thermal evolution of permeability and microstructure in sea ice," K. M. Golden, et al., Geophysical Research Letters, August 28, 2007. Full Article
rt Improving Stents - Part 2 By www.ams.org Published On :: Thu, 13 Nov 2008 10:07:07 -0500 Stents are expandable tubes that are inserted into blocked or damaged blood vessels. They offer a practical way to treat coronary artery disease, repairing vessels and keeping them open so that blood can flow freely. When stents work, they are a great alternative to radical surgery, but they can deteriorate or become dislodged. Mathematical models of blood vessels and stents are helping to determine better shapes and materials for the tubes. These models are so accurate that the FDA is considering requiring mathematical modeling in the design of stents before any further testing is done, to reduce the need for expensive experimentation. Precise modeling of the entire human vascular system is far beyond the reach of current computational power, so researchers focus their detailed models on small subsections, which are coupled with simpler models of the rest of the system. The Navier-Stokes equations are used to represent the flow of blood and its interaction with vessel walls. A mathematical proof was the central part of recent research that led to the abandonment of one type of stent and the design of better ones. The goal now is to create better computational fluid-vessel models and stent models to improve the treatment and prediction of coronary artery disease the major cause of heart attacks. For More Information: Design of Optimal Endoprostheses Using Mathematical Modeling, Canic, Krajcer, and Lapin, Endovascular Today, May 2006. Full Article
rt Improving Stents - Part 1 By www.ams.org Published On :: Thu, 13 Nov 2008 09:12:22 -0500 Stents are expandable tubes that are inserted into blocked or damaged blood vessels. They offer a practical way to treat coronary artery disease, repairing vessels and keeping them open so that blood can flow freely. When stents work, they are a great alternative to radical surgery, but they can deteriorate or become dislodged. Mathematical models of blood vessels and stents are helping to determine better shapes and materials for the tubes. These models are so accurate that the FDA is considering requiring mathematical modeling in the design of stents before any further testing is done, to reduce the need for expensive experimentation. Precise modeling of the entire human vascular system is far beyond the reach of current computational power, so researchers focus their detailed models on small subsections, which are coupled with simpler models of the rest of the system. The Navier-Stokes equations are used to represent the flow of blood and its interaction with vessel walls. A mathematical proof was the central part of recent research that led to the abandonment of one type of stent and the design of better ones. The goal now is to create better computational fluid-vessel models and stent models to improve the treatment and prediction of coronary artery disease the major cause of heart attacks. For More Information: Design of Optimal Endoprostheses Using Mathematical Modeling, Canic, Krajcer, and Lapin, Endovascular Today, May 2006. Full Article
rt Restoring Genius - Discovering lost works of Archimedes - Part 2 By www.ams.org Published On :: Thu, 13 Nov 2008 10:16:49 -0500 Archimedes was one of the most brilliant people ever, on a par with Einstein and Newton. Yet very little of what he wrote still exists because of the passage of time, and because many copies of his works were erased and the cleaned pages were used again. One of those written-over works (called a palimpsest) has resurfaced, and advanced digital imaging techniques using statistics and linear algebra have revealed his previously unknown discoveries in combinatorics and calculus. This leads to a question that would stump even Archimedes: How much further would mathematics and science have progressed had these discoveries not been erased? One of the most dramatic revelations of Archimedes. work was done using X-ray fluorescence. A painting, forged in the 1940s by one of the book.s former owners, obscured the original text, but X-rays penetrated the painting and highlighted the iron in the ancient ink, revealing a page of Archimedes. treatise The Method of Mechanical Theorems. The entire process of uncovering this and his other ideas is made possible by modern mathematics and physics, which are built on his discoveries and techniques. This completion of a circle of progress is entirely appropriate since one of Archimedes. accomplishments that wasn.t lost is his approximation of pi. For More Information: The Archimedes Codex, Reviel Netz and William Noel, 2007. Full Article
rt Restoring Genius - Discovering lost works of Archimedes - Part 1 By www.ams.org Published On :: Thu, 13 Nov 2008 10:09:47 -0500 Archimedes was one of the most brilliant people ever, on a par with Einstein and Newton. Yet very little of what he wrote still exists because of the passage of time, and because many copies of his works were erased and the cleaned pages were used again. One of those written-over works (called a palimpsest) has resurfaced, and advanced digital imaging techniques using statistics and linear algebra have revealed his previously unknown discoveries in combinatorics and calculus. This leads to a question that would stump even Archimedes: How much further would mathematics and science have progressed had these discoveries not been erased? One of the most dramatic revelations of Archimedes. work was done using X-ray fluorescence. A painting, forged in the 1940s by one of the book.s former owners, obscured the original text, but X-rays penetrated the painting and highlighted the iron in the ancient ink, revealing a page of Archimedes. treatise The Method of Mechanical Theorems. The entire process of uncovering this and his other ideas is made possible by modern mathematics and physics, which are built on his discoveries and techniques. This completion of a circle of progress is entirely appropriate since one of Archimedes. accomplishments that wasn.t lost is his approximation of pi. For More Information: The Archimedes Codex, Reviel Netz and William Noel, 2007. Full Article
rt Predicting Climate - Part 2 By www.ams.org Published On :: Wed, 16 Sep 2009 09:38:19 -0400 What.s in store for our climate and us? It.s an extraordinarily complex question whose answer requires physics, chemistry, earth science, and mathematics (among other subjects) along with massive computing power. Mathematicians use partial differential equations to model the movement of the atmosphere; dynamical systems to describe the feedback between land, ocean, air, and ice; and statistics to quantify the uncertainty of current projections. Although there is some discrepancy among different climate forecasts, researchers all agree on the tremendous need for people to join this effort and create new approaches to help understand our climate. It.s impossible to predict the weather even two weeks in advance, because almost identical sets of temperature, pressure, etc. can in just a few days result in drastically different weather. So how can anyone make a prediction about long-term climate? The answer is that climate is an average of weather conditions. In the same way that good predictions about the average height of 100 people can be made without knowing the height of any one person, forecasts of climate years into the future are feasible without being able to predict the conditions on a particular day. The challenge now is to gather more data and use subjects such as fluid dynamics and numerical methods to extend today.s 20-year projections forward to the next 100 years. For More Information: Mathematics of Climate Change: A New Discipline for an Uncertain Century, Dana Mackenzie, 2007. Full Article
rt Predicting Climate - Part 1 By www.ams.org Published On :: Wed, 16 Sep 2009 09:34:25 -0400 What.s in store for our climate and us? It.s an extraordinarily complex question whose answer requires physics, chemistry, earth science, and mathematics (among other subjects) along with massive computing power. Mathematicians use partial differential equations to model the movement of the atmosphere; dynamical systems to describe the feedback between land, ocean, air, and ice; and statistics to quantify the uncertainty of current projections. Although there is some discrepancy among different climate forecasts, researchers all agree on the tremendous need for people to join this effort and create new approaches to help understand our climate. It.s impossible to predict the weather even two weeks in advance, because almost identical sets of temperature, pressure, etc. can in just a few days result in drastically different weather. So how can anyone make a prediction about long-term climate? The answer is that climate is an average of weather conditions. In the same way that good predictions about the average height of 100 people can be made without knowing the height of any one person, forecasts of climate years into the future are feasible without being able to predict the conditions on a particular day. The challenge now is to gather more data and use subjects such as fluid dynamics and numerical methods to extend today.s 20-year projections forward to the next 100 years. For More Information: Mathematics of Climate Change: A New Discipline for an Uncertain Century, Dana Mackenzie, 2007. Full Article
rt Resisting the Spread of Disease - Part 2 By www.ams.org Published On :: Mon, 28 Sep 2009 09:58:07 -0400 One of the most useful tools in analyzing the spread of disease is a system of evolutionary equations that reflects the dynamics among three distinct categories of a population: those susceptible (S) to a disease, those infected (I) with it, and those recovered (R) from it. This SIR model is applicable to a range of diseases, from smallpox to the flu. To predict the impact of a particular disease it is crucial to determine certain parameters associated with it, such as the average number of people that a typical infected person will infect. Researchers estimate these parameters by applying statistical methods to gathered data, which aren.t complete because, for example, some cases aren.t reported. Armed with reliable models, mathematicians help public health officials battle the complex, rapidly changing world of modern disease. Today.s models are more sophisticated than those of even a few years ago. They incorporate information such as contact periods that vary with age (young people have contact with one another for a longer period of time than do adults from different households), instead of assuming equal contact periods for everyone. The capacity to treat variability makes it possible to predict the effectiveness of targeted vaccination strategies to combat the flu, for instance. Some models now use graph theory and matrices to represent networks of social interactions, which are important in understanding how far and how fast a given disease will spread. For More Information: Mathematical Models in Population Biology and Epidemiology, Fred Brauer and Carlos Castillo-Chavez. Full Article
rt Resisting the Spread of Disease - Part 1 By www.ams.org Published On :: Mon, 28 Sep 2009 09:54:18 -0400 One of the most useful tools in analyzing the spread of disease is a system of evolutionary equations that reflects the dynamics among three distinct categories of a population: those susceptible (S) to a disease, those infected (I) with it, and those recovered (R) from it. This SIR model is applicable to a range of diseases, from smallpox to the flu. To predict the impact of a particular disease it is crucial to determine certain parameters associated with it, such as the average number of people that a typical infected person will infect. Researchers estimate these parameters by applying statistical methods to gathered data, which aren.t complete because, for example, some cases aren.t reported. Armed with reliable models, mathematicians help public health officials battle the complex, rapidly changing world of modern disease. Today.s models are more sophisticated than those of even a few years ago. They incorporate information such as contact periods that vary with age (young people have contact with one another for a longer period of time than do adults from different households), instead of assuming equal contact periods for everyone. The capacity to treat variability makes it possible to predict the effectiveness of targeted vaccination strategies to combat the flu, for instance. Some models now use graph theory and matrices to represent networks of social interactions, which are important in understanding how far and how fast a given disease will spread. For More Information: Mathematical Models in Population Biology and Epidemiology, Fred Brauer and Carlos Castillo-Chavez. Full Article
rt Getting at the Truth - Part 2 By www.ams.org Published On :: Fri, 10 Dec 2010 14:43:42 -0500 Mathematics has helped investigators in several major cases of human rights abuses and election fraud. Among them: The 2009 election in Iran. A mathematical result known as Benford's Law states that the leading digits of truly random numbers aren't distributed uniformly, as might be expected. Instead, smaller digits, such as 1's, appear much more frequently than larger digits, such as 9's. Benford's Law and other statistical tests have been applied to the 2009 election and suggest strongly that the final totals are suspicious. Ethnic cleansing. When Slobodan Milosevic went on trial, it was his contention that the mass exodus of ethnic Albanians from Kosovo was due to NATO bombings and the activities of the Albanian Kosovo Liberation Army rather than anything he had ordered. A team collected data on the flow of refugees to test those hypotheses and was able to refute Milosevic's claim in its entirety. Guatemalan disappearances. Here, statistics is being used to extract information from over 80 million National Police archive pages related to about 200,000 deaths and disappearances. Sampling techniques give investigators an accurate representation of the records without them having to read every page. Families are getting long-sought after proof of what happened to their relatives, and investigators are uncovering patterns and motives behind the abductions and murders. Tragically, the people have disappeared. But because of this analysis, the facts won't. For More Information: Killings and Refugee Flow in Kosovo, March-June 1999, Ball et al., 2002. Full Article
rt Getting at the Truth - Part 1 By www.ams.org Published On :: Fri, 10 Dec 2010 14:38:47 -0500 Mathematics has helped investigators in several major cases of human rights abuses and election fraud. Among them: The 2009 election in Iran. A mathematical result known as Benford's Law states that the leading digits of truly random numbers aren't distributed uniformly, as might be expected. Instead, smaller digits, such as 1's, appear much more frequently than larger digits, such as 9's. Benford's Law and other statistical tests have been applied to the 2009 election and suggest strongly that the final totals are suspicious. Ethnic cleansing. When Slobodan Milosevic went on trial, it was his contention that the mass exodus of ethnic Albanians from Kosovo was due to NATO bombings and the activities of the Albanian Kosovo Liberation Army rather than anything he had ordered. A team collected data on the flow of refugees to test those hypotheses and was able to refute Milosevic's claim in its entirety. Guatemalan disappearances. Here, statistics is being used to extract information from over 80 million National Police archive pages related to about 200,000 deaths and disappearances. Sampling techniques give investigators an accurate representation of the records without them having to read every page. Families are getting long-sought after proof of what happened to their relatives, and investigators are uncovering patterns and motives behind the abductions and murders. Tragically, the people have disappeared. But because of this analysis, the facts won't. For More Information: Killings and Refugee Flow in Kosovo, March-June 1999, Ball et al., 2002. Full Article
rt Knowing Rogues - Part 2 By www.ams.org Published On :: Fri, 10 Dec 2010 14:55:41 -0500 It doesn't take a perfect storm to generate a rogue wave-an open-ocean wave much steeper and more massive than its neighbors that appears with little or no warning. Sometimes winds and currents collide causing waves to combine nonlinearly and produce these towering walls of water. Mathematicians and other researchers are collecting data from rogue waves and modeling them with partial differential equations to understand how and why they form. A deeper understanding of both their origins and their frequency will result in safer shipping and offshore platform operations. Since rogue waves are rare and short lived (fortunately), studying them is not easy. So some researchers are experimenting with light to create rogue waves in a different medium. Results of these experiments are consistent with sailors' claims that rogues, like other unusual events, are more frequent than what is predicted by standard models. The standard models had assumed a bell-shaped distribution for wave heights, and anticipated a rogue wave about once every 10,000 years. This purported extreme unlikelihood led designers and builders to not account for their potential catastrophic effects. Today's recognition of rogues as rare, but realistic, possibilities could save the shipping industry billions of dollars and hundreds of lives. For More Information: "Dashing Rogues", Sid Perkins, Science News, November 18, 2006. Full Article
rt Knowing Rogues - Part 1 By www.ams.org Published On :: Fri, 10 Dec 2010 14:49:28 -0500 It doesn't take a perfect storm to generate a rogue wave-an open-ocean wave much steeper and more massive than its neighbors that appears with little or no warning. Sometimes winds and currents collide causing waves to combine nonlinearly and produce these towering walls of water. Mathematicians and other researchers are collecting data from rogue waves and modeling them with partial differential equations to understand how and why they form. A deeper understanding of both their origins and their frequency will result in safer shipping and offshore platform operations. Since rogue waves are rare and short lived (fortunately), studying them is not easy. So some researchers are experimenting with light to create rogue waves in a different medium. Results of these experiments are consistent with sailors' claims that rogues, like other unusual events, are more frequent than what is predicted by standard models. The standard models had assumed a bell-shaped distribution for wave heights, and anticipated a rogue wave about once every 10,000 years. This purported extreme unlikelihood led designers and builders to not account for their potential catastrophic effects. Today's recognition of rogues as rare, but realistic, possibilities could save the shipping industry billions of dollars and hundreds of lives. For More Information: "Dashing Rogues", Sid Perkins, Science News, November 18, 2006. Full Article
rt Assigning Seats - Part 2 By www.ams.org Published On :: Fri, 10 Dec 2010 15:00:57 -0500 As difficult as it is to do the census, the ensuing process of determining the number of congressional seats for each state can be even harder. The basic premise, that the proportion of each state's delegation in the House should match its proportion of the U.S. population, is simple enough. The difficulty arises when deciding what to do with the fractions that inevitably arise (e.g., New York can't have 28.7 seats). Over the past 200 years, several methods of apportioning seats have been used. Many sound good but can lead to paradoxes, such as an increase in the total number of House seats actually resulting in a reduction of a state's delegation. The method used since the 1940s, whose leading proponent was a mathematician, is one that avoids such paradoxes. A natural question is Why 435 seats? Nothing in the Constitution mandates this number, although there is a prohibition against having more than one seat per 30,000 people. One model, based on the need for legislators to communicate with their constituents and with each other, uses algebra and calculus to show that the ideal assembly size is the cube root of the population it represents. Remarkably, the size of the House mirrored this rule until the early 1900s. To obey the rule now would require an increase to 670, which would presumably both better represent the population and increase the chances that the audience in the seats for those late speeches would outnumber the speaker. For More Information: "E pluribus confusion", Barry Cipra, American Scientist, July-August 2010. Full Article
rt Assigning Seats - Part 1 By www.ams.org Published On :: Fri, 10 Dec 2010 14:57:09 -0500 As difficult as it is to do the census, the ensuing process of determining the number of congressional seats for each state can be even harder. The basic premise, that the proportion of each state's delegation in the House should match its proportion of the U.S. population, is simple enough. The difficulty arises when deciding what to do with the fractions that inevitably arise (e.g., New York can't have 28.7 seats). Over the past 200 years, several methods of apportioning seats have been used. Many sound good but can lead to paradoxes, such as an increase in the total number of House seats actually resulting in a reduction of a state's delegation. The method used since the 1940s, whose leading proponent was a mathematician, is one that avoids such paradoxes. A natural question is Why 435 seats? Nothing in the Constitution mandates this number, although there is a prohibition against having more than one seat per 30,000 people. One model, based on the need for legislators to communicate with their constituents and with each other, uses algebra and calculus to show that the ideal assembly size is the cube root of the population it represents. Remarkably, the size of the House mirrored this rule until the early 1900s. To obey the rule now would require an increase to 670, which would presumably both better represent the population and increase the chances that the audience in the seats for those late speeches would outnumber the speaker. For More Information: "E pluribus confusion", Barry Cipra, American Scientist, July-August 2010. Full Article
rt Putting Another Cork in It - Part 2 By www.ams.org Published On :: Thu, 21 Apr 2011 15:43:16 -0400 A triple cork is a spinning jump in which the snowboarder is parallel to the ground three times while in the air. Such a jump had never been performed in a competition before 2011, which prompted ESPN.s Sport Science program to ask math professor Tim Chartier if it could be done under certain conditions. Originally doubtful, he and a recent math major graduate used differential equations, vector analysis, and calculus to discover that yes, a triple cork was indeed possible. A few days later, boarder Torstein Horgmo landed a successful triple cork at the X-Games (which presumably are named for everyone.s favorite variable). Snowboarding is not the only sport in which modern athletes and coaches seek answers from mathematics. Swimming and bobsledding research involves computational fluid dynamics to analyze fluid flow so as to decrease drag. Soccer and basketball analysts employ graph and network theory to chart passes and quantify team performance. And coaches in the NFL apply statistics and game theory to focus on the expected value of a play instead of sticking with the traditional Square root of 9 yards and a cloud of dust. Full Article
rt Putting Another Cork in It - Part 1 By www.ams.org Published On :: Thu, 21 Apr 2011 15:38:43 -0400 A triple cork is a spinning jump in which the snowboarder is parallel to the ground three times while in the air. Such a jump had never been performed in a competition before 2011, which prompted ESPN.s Sport Science program to ask math professor Tim Chartier if it could be done under certain conditions. Originally doubtful, he and a recent math major graduate used differential equations, vector analysis, and calculus to discover that yes, a triple cork was indeed possible. A few days later, boarder Torstein Horgmo landed a successful triple cork at the X-Games (which presumably are named for everyone.s favorite variable). Snowboarding is not the only sport in which modern athletes and coaches seek answers from mathematics. Swimming and bobsledding research involves computational fluid dynamics to analyze fluid flow so as to decrease drag. Soccer and basketball analysts employ graph and network theory to chart passes and quantify team performance. And coaches in the NFL apply statistics and game theory to focus on the expected value of a play instead of sticking with the traditional Square root of 9 yards and a cloud of dust. Full Article
rt Sounding the Alarm - Part 1 By www.ams.org Published On :: Thu, 16 Jun 2011 13:28:10 -0400 Nothing can prevent a tsunami from happening they are enormously powerful events of nature. But in many cases networks of seismic detectors, sea-level monitors and deep ocean buoys can allow authorities to provide adequate warning to those at risk. Mathematical models constructed from partial differential equations use the generated data to determine estimates of the speed and magnitude of a tsunami and its arrival time on coastlines. These models may predict whether a trough or a crest will be the first to arrive on shore. In only about half the cases (not all) does the trough arrive first, making the water level recede dramatically before the onslaught of the crest. Mathematics also helps in the placement of detectors and monitors. Researchers use geometry and population data to find the best locations for the sensors that will alert the maximum number of people. Once equipment is in place, warning centers collect and process data from many seismic stations to determine if an earthquake is the type that will generate a dangerous tsunami. All that work must wait until an event occurs because it is currently very hard to predict earthquakes. People on coasts far from an earthquake-generated tsunami may have hours to take action, but for those closer it.s a matter of minutes. The crest of a tsunami wave can travel at 450 miles per hour in open water, so fast algorithms for solving partial differential equations are essential. For More Information: Surface Water Waves and Tsunamis, Walter Craig, Journal of Dynamics and Differential Equations, Vol. 18, no. 3 (2006), pp. 525-549. Full Article
rt Sustaining the Supply Chain - Part 1 By www.ams.org Published On :: Tue, 12 Jul 2011 14:35:33 -0400 It.s often a challenge to get from Point A to Point B in normal circumstances, but after a disaster it can be almost impossible to transport food, water, and clothing from the usual supply points to the people in desperate need. A new mathematical model employs probability and nonlinear programming to design supply chains that have the best chance of functioning after a disaster. For each region or country, the model generates a robust chain of supply and delivery points that can respond to the combination of disruptions in the network and increased needs of the population. Math also helps medical agencies operate more efficiently during emergencies, such as an infectious outbreak. Fluid dynamics and combinatorial optimization are applied to facility layout and epidemiological models to allocate resources and improve operations while minimizing total infection within dispensing facilities. This helps ensure fast, effective administering of vaccines and other medicines. Furthermore, solution times are fast enough that officials can input up-to-the-minute data specific to their situation and make any necessary redistribution of supplies or staff in real time. For More Information: Supply Chain Network Economics: Dynamics of Prices, Flows, and Profits, Anna Nagurney, 2006. Full Article
rt Keeping the beat - Part 1 By www.ams.org Published On :: Wed, 5 Oct 2011 13:45:58 -0400 The heart.s function of pumping blood may seem fairly simple but the underlying mechanisms and electrical impulses that maintain a healthy rhythm are extremely complex. Many areas of mathematics, including differential equations, dynamical systems, and topology help model the electrical behavior of cardiac cells, the connections between those cells and the heart.s overall geometry. Researchers aim to gain a better understanding of the normal operation of the heart, as well as learn how to diagnose the onset of abnormalities and correct them. Of the many things that can go wrong with a heart.s rhythm, some measure of unpredictability is (surprisingly) not one of them. A healthy heartbeat is actually quite chaotic not regular at all. Furthermore, beat patterns become less chaotic as people age and heart function diminishes. In fact, one researcher recommends that patients presented with a new medication should ask their doctors, "What is this drug going to do to my fractal dimensionality?" For More Information: Taking Mathematics to Heart: Mathematical Challenges in Cardiac Electrophysiology, John W. Cain, Notices of the AMS, April 2011, pp. 542-549. Full Article
rt Harnessing Wind Power - Part 1 By www.ams.org Published On :: Wed, 5 Oct 2011 14:01:45 -0400 Mathematics contributes in many ways to the process of converting wind power into usable energy. Large-scale weather models are used to find suitable locations for wind farms, while more narrowly focused models incorporating interactions arising from factors such as wake effects and turbulence specify how to situate individual turbines within a farm. In addition, computational fluid dynamics describes air flow and drag around turbines. This helps determine the optimal shapes for the blades, both structurally and aerodynamically, to extract as much energy as possible, and keep noise levels and costs down. Mathematics also helps answer two fundamental questions about wind turbines. First, why three blades? Turbines with fewer blades extract less energy and are noisier (because the blades must turn faster). Those with more than three blades would capture more energy but only about three percent more, which doesn.t justify the increased cost. Second, what percentage of wind energy can a turbine extract? Calculus and laws of conservation provide the justification for Betz Law, which states that no wind turbine can capture more than 60% of the energy in the wind. Modern turbines generally gather 40-50%. So the answer to someone who touts a turbine that can capture 65% of wind energy is "All Betz" are off. For More Information: Wind Energy Explained: Theory, Design and Application, Manwell, McGowan, and Rogers, 2010. Full Article
rt Keeping Things in Focus - Part 1 By www.ams.org Published On :: Wed, 5 Oct 2011 14:15:55 -0400 Some of the simplest and most well-known curves parabolas and ellipses, which can be traced back to ancient Greece are also among the most useful. Parabolas have a reflective property that is employed in many of today.s solar power technologies. Mirrors with a parabolic shape reflect all entering light to a single point called the focus, where the solar power is converted into usable energy. Ellipses, which have two foci, have a similar reflecting property that is exploited in a medical procedure called lithotripsy. Patients with kidney stones and gallstones are positioned in a tank shaped like half an ellipse so that the stones are at one focus. Acoustic waves sent from the other focus concentrate all their energy on the stones, pulverizing them without surgery. Math can sometimes throw you a curve, but that.s not necessarily a bad thing. Parabolas and ellipses are curves called conic sections. Another curve in this category is the hyperbola, which may have the most profound application of all the nature of the universe. In plane geometry, points that are a given distance from a fixed point form a circle. In space, points that are a given spacetime distance from a fixed point form one branch of a hyperbola. This is not an arbitrary mandate but instead a natural conclusion from the equations that result when the principle of relativity is reconciled with our notions of distance and causality. And although a great deal of time has elapsed since the discovery of conic sections, they continue to reap benefits today. For More Information: Practical Conic Sections: The Geometric Properties of Ellipses, Parabolas and Hyperbolas, J. W. Downs, 2010. Full Article
rt Forecasting Crime Part 1 By www.ams.org Published On :: Tue, 21 Aug 2012 09:49:48 -0400 No one can predict who will commit a crime but in some cities math is helping detect areas where crimes have the greatest chance of occurring. Police then increase patrols in these "hot spots" in order to prevent crime. This innovative practice, called predictive policing, is based on large amounts of data collected from previous crimes, but it involves more than just maps and push pins. Predictive policing identifies hot spots by using algorithms similar to those used to predict aftershocks after major earthquakes. Just as aftershocks are more likely near a recent earthquake.s epicenter, so too are crimes, as criminals do indeed return to, or very close to, the scene of a crime. Cities employing this approach have seen crime rates drop and studies are underway to measure predictive policing.s part in that drop. One fact that has been determined concerns the nature of hot spots. Researchers using partial differential equations and bifurcation theory have discovered two types of hot spots, which respond quite differently to increased patrols. One type will shift to another area of the city while the other will disappear entirely. Unfortunately the two appear the same on the surface, so mathematicians and others are working to help police find ways to differentiate between the two so as to best allocate their resources. Full Article
rt Catching and Releasing: Part 2 By www.ams.org Published On :: Mon, 1 Oct 2012 09:46:50 -0400 There.s more mathematics involved in juggling than just trying to make sure that the number of balls (or chainsaws) that hits the ground stays at zero. Subjects such as combinatorics and abstract algebra help jugglers answer important questions, such as whether a particular juggling pattern can actually be juggled. For example, can balls be juggled so that the time period that each ball stays aloft alternates between five counts and one? The answer is Yes. Math also tells you that the number of balls needed for such a juggling pattern is the average of the counts, in this case three. Once a pattern is shown to be juggleable and the number of balls needed is known, equations of motion determine the speed with which each ball must be thrown and the maximum height it will attain. Obviously the harder a juggler throws, the faster and higher an object will go. Unfortunately hang time increases proportionally to the square root of the height, so the difficulty of keeping many objects in the air increases very quickly. Both math and juggling have been around for millennia yet questions still remain in both subjects. As two juggling mathematicians wrote, .A juggler, like a mathematician, is never finished: there is always another great unsolved problem. Full Article
rt Catching and Releasing: Part 1 By www.ams.org Published On :: Mon, 1 Oct 2012 09:21:21 -0400 There.s more mathematics involved in juggling than just trying to make sure that the number of balls (or chainsaws) that hits the ground stays at zero. Subjects such as combinatorics and abstract algebra help jugglers answer important questions, such as whether a particular juggling pattern can actually be juggled. For example, can balls be juggled so that the time period that each ball stays aloft alternates between five counts and one? The answer is Yes. Math also tells you that the number of balls needed for such a juggling pattern is the average of the counts, in this case three. Once a pattern is shown to be juggleable and the number of balls needed is known, equations of motion determine the speed with which each ball must be thrown and the maximum height it will attain. Obviously the harder a juggler throws, the faster and higher an object will go. Unfortunately hang time increases proportionally to the square root of the height, so the difficulty of keeping many objects in the air increases very quickly. Both math and juggling have been around for millennia yet questions still remain in both subjects. As two juggling mathematicians wrote, .A juggler, like a mathematician, is never finished: there is always another great unsolved problem. Full Article
rt Finding Friends: Part 1 By www.ams.org Published On :: Mon, 1 Oct 2012 10:02:39 -0400 Facebook has over 700 million users with almost 70 billion connections. The hard part isn.t people making friends; rather it.s Facebook.s computers storing and accessing relevant data, including information about friends of friends. The latter is important for recommendations to users (People You May Know). Much of this work involves computer science, but mathematics also plays a significant role. Subjects such as linear programming and graph theory help cut in half the time needed to determine a person.s friends of friends and reduce network traffic on Facebook.s machines by about two-thirds. What.s not to like? The probability of people being friends tends to decrease as the distance between them increases. This makes sense in the physical world, but it.s true in the digital world as well. Yet, despite this, the enormous network of Facebook users is an example of a small-world network. The average distance between Facebook users the number of friend-links to connect people is less than five. And even though the collection of users and their connections may look chaotic, the network actually has a good deal of structure. For example, it.s searchable. That is, two people who are, say, five friend-links away, could likely navigate from one person to the other by knowing only the friends at each point (but not knowing anyone.s friends of friends). For More Information: Networks, Crowds, and Markets: Reasoning about a Highly Connected World, David Easley and Jon Kleinberg, 2010. Full Article
rt Freeing Up Architecture: Part 1 By www.ams.org Published On :: Thu, 25 Jul 2013 15:10:01 -0400 Many of today.s most striking buildings are nontraditional freeform shapes. A new field of mathematics, discrete differential geometry, makes it possible to construct these complex shapes that begin as designers. digital creations. Since it.s impossible to fashion a large structure out of a single piece of glass or metal, the design is realized using smaller pieces that best fit the original smooth surface. Triangles would appear to be a natural choice to represent a shape, but it turns out that using quadrilaterals.which would seem to be more difficult.saves material and money and makes the structure easier to build. One of the primary goals of researchers is to create an efficient, streamlined process that integrates design and construction parameters so that early on architects can assess the feasibility of a given idea. Currently, implementing a plan involves extensive (and often expensive) interplay on computers between subdivision.breaking up the entire structure into manageable manufacturable pieces.and optimization.solving nonlinear equations in high-dimensional spaces to get as close as possible to the desired shape. Designers and engineers are seeking new mathematics to improve that process. Thus, in what might be characterized as a spiral with each field enriching the other, their needs will lead to new mathematics, which makes the shapes possible in the first place. For More Information: .Geometric computing for freeform architecture,. J. Wallner and H. Pottmann. Journal of Mathematics in Industry, Vol. 1, No. 4, 2011. Full Article
rt Working Up a Lather : Part 1 By www.ams.org Published On :: Tue, 20 Aug 2013 14:30:44 -0400 James Sethian and Frank Morgan talk about their research investigating bubbles. Full Article
rt Thinking Outside the Box Score - Math and basketball: Part 1 By www.ams.org Published On :: Wed, 18 Sep 2013 13:03:35 -0400 Muthu Alagappan explains how topology and analytics are bringing a new look to basketball. Full Article
rt Getting Inside Your Head - The brain's communication pathways: Part 1 By www.ams.org Published On :: Wed, 18 Sep 2013 13:07:40 -0400 Van Wedeen talks about the geometry of the brain's communication pathways. Full Article
rt Making an Attitude Adjustment: Part 1 By www.ams.org Published On :: Mon, 9 Dec 2013 13:46:04 -0500 Nazareth Bedrossian talks about using math to reposition the International Space Station. Full Article
rt Unifying Diverse Cities: Part 1 By www.ams.org Published On :: Mon, 9 Dec 2013 13:49:34 -0500 Despite the considerable variety among cities, researchers have identified common mathematical properties that hold around the world, regardless of a city.s population, location or even time. Full Article
rt Scheduling Sports By www.ams.org Published On :: Mon, 9 Jun 2014 10:45:57 -0400 Michael Trick talks about creating schedules for leagues. Full Article
rt Being Knotty: Part 1 By www.ams.org Published On :: Mon, 15 Sep 2014 13:44:36 -0400 Colin Adams talks about knot theory Full Article
rt Exploiting a Little-Known Force: Part 1 By www.ams.org Published On :: Mon, 15 Sep 2014 13:43:45 -0400 Lydia Bourouiba talks about surface tension and the transmission of disease Full Article
rt Treating Tremors - Helping with Parkinson's disease - Part 1 By www.ams.org Published On :: Wed, 3 Dec 2014 10:57:56 -0500 Researcher: Christopher Butson, Scientific Computing and Imaging Institute, University of Utah. Christopher Butson talks about work he's done to help treat Parkinson's disease. Full Article
rt Working With the System: Part 2 By www.ams.org Published On :: Mon, 5 Oct 2015 10:53:25 -0400 Researcher: Cristina Stoica, Wilfrid Laurier University Description: Cristina Stoica talks about celestial mechanics. Full Article
rt Thwarting Poachers: Part 2 By www.ams.org Published On :: Thu, 9 Jun 2016 14:55:20 -0400 Researcher: Thomas Snitch, University of Maryland Description: Thomas Snitch talks about nabbing poachers with math. Audio files: podcast-mom-poaching-1.mp3 and podcast-mom-poaching-2.mp3 Full Article
rt Dis-playing the Game of Thrones: Part 2 By www.ams.org Published On :: Thu, 9 Jun 2016 15:05:03 -0400 Researcher: Andrew Beveridge, Macalester College Moment Title: Dis-playing the Game of Thrones Description: Andrew Beveridge uses math to analyze Game of Thrones. Full Article
rt Making Art Work By www.ams.org Published On :: Tue, 11 Oct 2016 13:17:50 -0400 Researcher: Annalisa Crannell, Franklin & Marshall College. Annalisa Crannell on perspective in art. Full Article
rt Maintaining a Balance Part 2 By www.ams.org Published On :: Tue, 11 Oct 2016 13:26:48 -0400 Researcher: Daniel Rothman, MIT. Dan Rothman talks about how math helped understand a mass extinction. Full Article
rt Generating Patterns Part 2 By www.ams.org Published On :: Tue, 22 Aug 2017 15:07:05 -0400 Researcher: Michel C. Molinkovitch, University of Geneva Description: Michel C. Milinkovitch used math, physics, and biology for an amazing discovery about the patterns on a lizard's skin. Full Article