ia

Wintrust Financial Corporation Reports Record Full-Year 2019 Net Income of $355.7 million and Fourth Quarter 2019 Net Income of $86.0 million, up 8% from the Fourth Quarter 2018

To view more press releases, please visit http://www.snl.com/irweblinkx/news.aspx?iid=1024452.








ia

Wintrust Financial Corporation Announces Precautionary Decision to Help Achieve Community Health Objectives By Temporarily Closing Selected Branches

To view more press releases, please visit http://www.snl.com/irweblinkx/news.aspx?iid=1024452.











ia

Linux Foundation Leads Initiative for Better Digital Trust

The Linux Foundation will host ToIP, a cross-industry effort to ensure more secure data handling over the Internet. This new foundation is an independent project enabling trustworthy exchange and verification of data between any two parties on the Internet. The ToIP Foundation will provide a robust common standard to instill confidence that data is coming from a trusted source.




ia

4 Ways Intelligent CRM Can Help You Reach Tech-Savvy Millennials

Does your customer relationship management strategy have what it takes to reach Generation Y? It's estimated that by 2021, an additional $394 billion in revenue could be gained from artificial intelligence adoption in CRM activities in the U.S. As companies grow and technology evolves at a faster-than-ever pace, collecting, storing and providing data is becoming a bigger and bigger task.




ia

New York's crooked politicians




ia

Betrayed by a Mafia Underboss




ia

Mary Elizabeth Williams: The clumsy, beautiful Rally to Restore Sanity




ia

The Lord Is Not On Trial Here Today




ia

Learning Debian GNU/Linux








ia

Monetary policy: 10 years after the financial crisis

Speech by Mr Agustín Carstens, General Manager of the BIS, to the Basler Bankenforum, Basel, 5 September 2019.




ia

The quest for financial integration in Europe and globally

Speech by Mr Agustín Carstens, General Manager of the BIS, at the Eurofi Financial Forum, Helsinki, 12 September 2019.




ia

BIS Quarterly Review, September 2019 - media briefing

On-the-record remarks of the September 2019 Quarterly Review media briefing by Mr Claudio Borio, Head of the Monetary and Economic Department, and Mr Hyun Song Shin, Economic Adviser and Head of Research, 20 September 2019.




ia

Vulnerabilities in the international monetary and financial system

Speech by Mr Claudio Borio, Head of the Monetary and Economic Department of the BIS, at the OECD-G20 High Level Policy Seminar, Paris, 11 September 2019.




ia

A tale of two financial cycles: domestic and global

Lecture by Claudio Borio, Head of the Monetary and Economic Department, at the University of Zürich, Zürich, 19 November 2019.




ia

Welfare implications of digital financial innovation

Based on remarks by Mr Luiz Awazu Pereira da Silva, Deputy General Manager of the BIS, with Jon Frost and Leonardo Gambacorta at the Santander International Banking Conference on "Banking on trust: Building confidence in the future", Madrid, 5 November 2019.




ia

BIS Quarterly Review, December 2019 - media briefing

On-the-record remarks of the December 2019 Quarterly Review media briefing by Mr Claudio Borio, Head of the Monetary and Economic Department, and Mr Hyun Song Shin, Economic Adviser and Head of Research, 6 December 2019.




ia

BIS Quarterly Review, March 2020 - media remarks

On-the-record remarks of the March 2020 Quarterly Review media briefing by Mr Claudio Borio, Head of the Monetary and Economic Department, and Mr Hyun Song Shin, Economic Adviser and Head of Research, 28 February 2020.




ia

Deletion of a Neuronal Drp1 Activator Protects against Cerebral Ischemia

Mitochondrial fission catalyzed by dynamin-related protein 1 (Drp1) is necessary for mitochondrial biogenesis and maintenance of healthy mitochondria. However, excessive fission has been associated with multiple neurodegenerative disorders, and we recently reported that mice with smaller mitochondria are sensitized to ischemic stroke injury. Although pharmacological Drp1 inhibition has been put forward as neuroprotective, the specificity and mechanism of the inhibitor used is controversial. Here, we provide genetic evidence that Drp1 inhibition is neuroprotective. Drp1 is activated by dephosphorylation of an inhibitory phosphorylation site, Ser637. We identify Bβ2, a mitochondria-localized protein phosphatase 2A (PP2A) regulatory subunit, as a neuron-specific Drp1 activator in vivo. Bβ2 KO mice of both sexes display elongated mitochondria in neurons and are protected from cerebral ischemic injury. Functionally, deletion of Bβ2 and maintained Drp1 Ser637 phosphorylation improved mitochondrial respiratory capacity, Ca2+ homeostasis, and attenuated superoxide production in response to ischemia and excitotoxicity in vitro and ex vivo. Last, deletion of Bβ2 rescued excessive stroke damage associated with dephosphorylation of Drp1 S637 and mitochondrial fission. These results indicate that the state of mitochondrial connectivity and PP2A/Bβ2-mediated dephosphorylation of Drp1 play a critical role in determining the severity of cerebral ischemic injury. Therefore, Bβ2 may represent a target for prophylactic neuroprotective therapy in populations at high risk of stroke.

SIGNIFICANCE STATEMENT With recent advances in clinical practice including mechanical thrombectomy up to 24 h after the ischemic event, there is resurgent interest in neuroprotective stroke therapies. In this study, we demonstrate reduced stroke damage in the brain of mice lacking the Bβ2 regulatory subunit of protein phosphatase 2A, which we have shown previously acts as a positive regulator of the mitochondrial fission enzyme dynamin-related protein 1 (Drp1). Importantly, we provide evidence that deletion of Bβ2 can rescue excessive ischemic damage in mice lacking the mitochondrial PKA scaffold AKAP1, apparently via opposing effects on Drp1 S637 phosphorylation. These results highlight reversible phosphorylation in bidirectional regulation of Drp1 activity and identify Bβ2 as a potential pharmacological target to protect the brain from stroke injury.




ia

The Right Temporoparietal Junction Is Causally Associated with Embodied Perspective-taking

A prominent theory claims that the right temporoparietal junction (rTPJ) is especially associated with embodied processes relevant to perspective-taking. In the present study, we use high-definition transcranial direct current stimulation to provide evidence that the rTPJ is causally associated with the embodied processes underpinning perspective-taking. Eighty-eight young human adults were stratified to receive either rTPJ or dorsomedial PFC anodal high-definition transcranial direct current stimulation in a sham-controlled, double-blind, repeated-measures design. Perspective-tracking (line-of-sight) and perspective-taking (embodied rotation) were assessed using a visuo-spatial perspective-taking task that required understanding what another person could see or how they see it, respectively. Embodied processing was manipulated by positioning the participant in a manner congruent or incongruent with the orientation of an avatar on the screen. As perspective-taking, but not perspective-tracking, is influenced by bodily position, this allows the investigation of the specific causal role for the rTPJ in embodied processing. Crucially, anodal stimulation to the rTPJ increased the effect of bodily position during perspective-taking, whereas no such effects were identified during perspective-tracking, thereby providing evidence for a causal role for the rTPJ in the embodied component of perspective-taking. Stimulation to the dorsomedial PFC had no effect on perspective-tracking or taking. Therefore, the present study provides support for theories postulating that the rTPJ is causally involved in embodied cognitive processing relevant to social functioning.

SIGNIFICANCE STATEMENT The ability to understand another's perspective is a fundamental component of social functioning. Adopting another perspective is thought to involve both embodied and nonembodied processes. The present study used high-definition transcranial direct current stimulation (HD-tDCS) and provided causal evidence that the right temporoparietal junction is involved specifically in the embodied component of perspective-taking. Specifically, HD-tDCS to the right temporoparietal junction, but not another hub of the social brain (dorsomedial PFC), increased the effect of body position during perspective-taking, but not tracking. This is the first causal evidence that HD-tDCS can modulate social embodied processing in a site-specific and task-specific manner.




ia

Ultra-high-resolution fMRI of Human Ventral Temporal Cortex Reveals Differential Representation of Categories and Domains

Human ventral temporal cortex (VTC) is critical for visual recognition. It is thought that this ability is supported by large-scale patterns of activity across VTC that contain information about visual categories. However, it is unknown how category representations in VTC are organized at the submillimeter scale and across cortical depths. To fill this gap in knowledge, we measured BOLD responses in medial and lateral VTC to images spanning 10 categories from five domains (written characters, bodies, faces, places, and objects) at an ultra-high spatial resolution of 0.8 mm using 7 Tesla fMRI in both male and female participants. Representations in lateral VTC were organized most strongly at the general level of domains (e.g., places), whereas medial VTC was also organized at the level of specific categories (e.g., corridors and houses within the domain of places). In both lateral and medial VTC, domain-level and category-level structure decreased with cortical depth, and downsampling our data to standard resolution (2.4 mm) did not reverse differences in representations between lateral and medial VTC. The functional diversity of representations across VTC partitions may allow downstream regions to read out information in a flexible manner according to task demands. These results bridge an important gap between electrophysiological recordings in single neurons at the micron scale in nonhuman primates and standard-resolution fMRI in humans by elucidating distributed responses at the submillimeter scale with ultra-high-resolution fMRI in humans.

SIGNIFICANCE STATEMENT Visual recognition is a fundamental ability supported by human ventral temporal cortex (VTC). However, the nature of fine-scale, submillimeter distributed representations in VTC is unknown. Using ultra-high-resolution fMRI of human VTC, we found differential distributed visual representations across lateral and medial VTC. Domain representations (e.g., faces, bodies, places, characters) were most salient in lateral VTC, whereas category representations (e.g., corridors/houses within the domain of places) were equally salient in medial VTC. These results bridge an important gap between electrophysiological recordings in single neurons at a micron scale and fMRI measurements at a millimeter scale.




ia

Noncoding Microdeletion in Mouse Hgf Disrupts Neural Crest Migration into the Stria Vascularis, Reduces the Endocochlear Potential, and Suggests the Neuropathology for Human Nonsyndromic Deafness DFNB39

Hepatocyte growth factor (HGF) is a multifunctional protein that signals through the MET receptor. HGF stimulates cell proliferation, cell dispersion, neuronal survival, and wound healing. In the inner ear, levels of HGF must be fine-tuned for normal hearing. In mice, a deficiency of HGF expression limited to the auditory system, or an overexpression of HGF, causes neurosensory deafness. In humans, noncoding variants in HGF are associated with nonsyndromic deafness DFNB39. However, the mechanism by which these noncoding variants causes deafness was unknown. Here, we reveal the cause of this deafness using a mouse model engineered with a noncoding intronic 10 bp deletion (del10) in Hgf. Male and female mice homozygous for del10 exhibit moderate-to-profound hearing loss at 4 weeks of age as measured by tone burst auditory brainstem responses. The wild type (WT) 80 mV endocochlear potential was significantly reduced in homozygous del10 mice compared with WT littermates. In normal cochlea, endocochlear potentials are dependent on ion homeostasis mediated by the stria vascularis (SV). Previous studies showed that developmental incorporation of neural crest cells into the SV depends on signaling from HGF/MET. We show by immunohistochemistry that, in del10 homozygotes, neural crest cells fail to infiltrate the developing SV intermediate layer. Phenotyping and RNAseq analyses reveal no other significant abnormalities in other tissues. We conclude that, in the inner ear, the noncoding del10 mutation in Hgf leads to developmental defects of the SV and consequently dysfunctional ion homeostasis and a reduction in the EP, recapitulating human DFNB39 nonsyndromic deafness.

SIGNIFICANCE STATEMENT Hereditary deafness is a common, clinically and genetically heterogeneous neurosensory disorder. Previously, we reported that human deafness DFNB39 is associated with noncoding variants in the 3'UTR of a short isoform of HGF encoding hepatocyte growth factor. For normal hearing, HGF levels must be fine-tuned as an excess or deficiency of HGF cause deafness in mouse. Using a Hgf mutant mouse with a small 10 bp deletion recapitulating a human DFNB39 noncoding variant, we demonstrate that neural crest cells fail to migrate into the stria vascularis intermediate layer, resulting in a significantly reduced endocochlear potential, the driving force for sound transduction by inner ear hair cells. HGF-associated deafness is a neurocristopathy but, unlike many other neurocristopathies, it is not syndromic.




ia

Interneuron NMDA Receptor Ablation Induces Hippocampus-Prefrontal Cortex Functional Hypoconnectivity after Adolescence in a Mouse Model of Schizophrenia

Although the etiology of schizophrenia is still unknown, it is accepted to be a neurodevelopmental disorder that results from the interaction of genetic vulnerabilities and environmental insults. Although schizophrenia's pathophysiology is still unclear, postmortem studies point toward a dysfunction of cortical interneurons as a central element. It has been suggested that alterations in parvalbumin-positive interneurons in schizophrenia are the consequence of a deficient signaling through NMDARs. Animal studies demonstrated that early postnatal ablation of the NMDAR in corticolimbic interneurons induces neurobiochemical, physiological, behavioral, and epidemiological phenotypes related to schizophrenia. Notably, the behavioral abnormalities emerge only after animals complete their maturation during adolescence and are absent if the NMDAR is deleted during adulthood. This suggests that interneuron dysfunction must interact with development to impact on behavior. Here, we assess in vivo how an early NMDAR ablation in corticolimbic interneurons impacts on mPFC and ventral hippocampus functional connectivity before and after adolescence. In juvenile male mice, NMDAR ablation results in several pathophysiological traits, including increased cortical activity and decreased entrainment to local gamma and distal hippocampal theta rhythms. In addition, adult male KO mice showed reduced ventral hippocampus-mPFC-evoked potentials and an augmented low-frequency stimulation LTD of the pathway, suggesting that there is a functional disconnection between both structures in adult KO mice. Our results demonstrate that early genetic abnormalities in interneurons can interact with postnatal development during adolescence, triggering pathophysiological mechanisms related to schizophrenia that exceed those caused by NMDAR interneuron hypofunction alone.

SIGNIFICANCE STATEMENT NMDAR hypofunction in cortical interneurons has been linked to schizophrenia pathophysiology. How a dysfunction of GABAergic cortical interneurons interacts with maturation during adolescence has not been clarified yet. Here, we demonstrate in vivo that early postnatal ablation of the NMDAR in corticolimbic interneurons results in an overactive but desynchronized PFC before adolescence. Final postnatal maturation during this stage outspreads the impact of the genetic manipulation toward a functional disconnection of the ventral hippocampal-prefrontal pathway, probably as a consequence of an exacerbated propensity toward hippocampal-evoked depotentiation plasticity. Our results demonstrate a complex interaction between genetic and developmental factors affecting cortical interneurons and PFC function.




ia

Resolving the Spatial Profile of Figure Enhancement in Human V1 through Population Receptive Field Modeling

The detection and segmentation of meaningful figures from their background is one of the primary functions of vision. While work in nonhuman primates has implicated early visual mechanisms in this figure–ground modulation, neuroimaging in humans has instead largely ascribed the processing of figures and objects to higher stages of the visual hierarchy. Here, we used high-field fMRI at 7 Tesla to measure BOLD responses to task-irrelevant orientation-defined figures in human early visual cortex (N = 6, four females). We used a novel population receptive field mapping-based approach to resolve the spatial profiles of two constituent mechanisms of figure–ground modulation: a local boundary response, and a further enhancement spanning the full extent of the figure region that is driven by global differences in features. Reconstructing the distinct spatial profiles of these effects reveals that figure enhancement modulates responses in human early visual cortex in a manner consistent with a mechanism of automatic, contextually driven feedback from higher visual areas.

SIGNIFICANCE STATEMENT A core function of the visual system is to parse complex 2D input into meaningful figures. We do so constantly and seamlessly, both by processing information about visible edges and by analyzing large-scale differences between figure and background. While influential neurophysiology work has characterized an intriguing mechanism that enhances V1 responses to perceptual figures, we have a poor understanding of how the early visual system contributes to figure–ground processing in humans. Here, we use advanced computational analysis methods and high-field human fMRI data to resolve the distinct spatial profiles of local edge and global figure enhancement in the early visual system (V1 and LGN); the latter is distinct and consistent with a mechanism of automatic, stimulus-driven feedback from higher-level visual areas.




ia

The Effect of Counterfactual Information on Outcome Value Coding in Medial Prefrontal and Cingulate Cortex: From an Absolute to a Relative Neural Code

Adaptive coding of stimuli is well documented in perception, where it supports efficient encoding over a broad range of possible percepts. Recently, a similar neural mechanism has been reported also in value-based decision, where it allows optimal encoding of vast ranges of values in PFC: neuronal response to value depends on the choice context (relative coding), rather than being invariant across contexts (absolute coding). Additionally, value learning is sensitive to the amount of feedback information: providing complete feedback (both obtained and forgone outcomes) instead of partial feedback (only obtained outcome) improves learning. However, it is unclear whether relative coding occurs in all PFC regions and how it is affected by feedback information. We systematically investigated univariate and multivariate feedback encoding in various mPFC regions and compared three modes of neural coding: absolute, partially-adaptive and fully-adaptive.

Twenty-eight human participants (both sexes) performed a learning task while undergoing fMRI scanning. On each trial, they chose between two symbols associated with a certain outcome. Then, the decision outcome was revealed. Notably, in one-half of the trials participants received partial feedback, whereas in the other half they got complete feedback. We used univariate and multivariate analysis to explore value encoding in different feedback conditions.

We found that both obtained and forgone outcomes were encoded in mPFC, but with opposite sign in its ventral and dorsal subdivisions. Moreover, we showed that increasing feedback information induced a switch from absolute to relative coding. Our results suggest that complete feedback information enhances context-dependent outcome encoding.

SIGNIFICANCE STATEMENT This study offers a systematic investigation of the effect of the amount of feedback information (partial vs complete) on univariate and multivariate outcome value encoding, within multiple regions in mPFC and cingulate cortex that are critical for value-based decisions and behavioral adaptation. Moreover, we provide the first comparison of three possible models of neural coding (i.e., absolute, partially-adaptive, and fully-adaptive coding) of value signal in these regions, by using commensurable measures of prediction accuracy. Taken together, our results help build a more comprehensive picture of how the human brain encodes and processes outcome value. In particular, our results suggest that simultaneous presentation of obtained and foregone outcomes promotes relative value representation.




ia

Contribution of NPY Y5 Receptors to the Reversible Structural Remodeling of Basolateral Amygdala Dendrites in Male Rats Associated with NPY-Mediated Stress Resilience

Endogenous neuropeptide Y (NPY) and corticotrophin-releasing factor (CRF) modulate the responses of the basolateral amygdala (BLA) to stress and are associated with the development of stress resilience and vulnerability, respectively. We characterized persistent effects of repeated NPY and CRF treatment on the structure and function of BLA principal neurons in a novel organotypic slice culture (OTC) model of male rat BLA, and examined the contributions of specific NPY receptor subtypes to these neural and behavioral effects. In BLA principal neurons within the OTCs, repeated NPY treatment caused persistent attenuation of excitatory input and induced dendritic hypotrophy via Y5 receptor activation; conversely, CRF increased excitatory input and induced hypertrophy of BLA principal neurons. Repeated treatment of OTCs with NPY followed by an identical treatment with CRF, or vice versa, inhibited or reversed all structural changes in OTCs. These structural responses to NPY or CRF required calcineurin or CaMKII, respectively. Finally, repeated intra-BLA injections of NPY or a Y5 receptor agonist increased social interaction, a validated behavior for anxiety, and recapitulated structural changes in BLA neurons seen in OTCs, while a Y5 receptor antagonist prevented NPY's effects both on behavior and on structure. These results implicate the Y5 receptor in the long-term, anxiolytic-like effects of NPY in the BLA, consistent with an intrinsic role in stress buffering, and highlight a remarkable mechanism by which BLA neurons may adapt to different levels of stress. Moreover, BLA OTCs offer a robust model to study mechanisms associated with resilience and vulnerability to stress in BLA.

SIGNIFICANCE STATEMENT Within the basolateral amygdala (BLA), neuropeptide Y (NPY) is associated with buffering the neural stress response induced by corticotropin releasing factor, and promoting stress resilience. We used a novel organotypic slice culture model of BLA, complemented with in vivo studies, to examine the cellular mechanisms associated with the actions of NPY. In organotypic slice cultures, repeated NPY treatment reduces the complexity of the dendritic extent of anxiogenic BLA principal neurons, making them less excitable. NPY, via activation of Y5 receptors, additionally inhibits and reverses the increases in dendritic extent and excitability induced by the stress hormone, corticotropin releasing factor. This NPY-mediated neuroplasticity indicates that resilience or vulnerability to stress may thus involve neuropeptide-mediated dendritic remodeling in BLA principal neurons.




ia

Ventral Hippocampal Input to the Prelimbic Cortex Dissociates the Context from the Cue Association in Trace Fear Memory

The PFC, through its high degree of interconnectivity with cortical and subcortical brain areas, mediates cognitive and emotional processes in support of adaptive behaviors. This includes the formation of fear memories when the anticipation of threat demands learning about temporal or contextual cues, as in trace fear conditioning. In this variant of fear learning, the association of a cue and shock across an empty trace interval of several seconds requires sustained cue-elicited firing in the prelimbic cortex (PL). However, it is unknown how and when distinct PL afferents contribute to different associative components of memory. Among the prominent inputs to PL, the hippocampus shares with PL a role in both working memory and contextual processing. Here we tested the necessity of direct hippocampal input to the PL for the acquisition of trace-cued fear memory and the simultaneously acquired contextual fear association. Optogenetic silencing of ventral hippocampal (VH) terminals in the PL of adult male Long-Evans rats selectively during paired trials revealed that direct communication between the VH and PL during training is necessary for contextual fear memory, but not for trace-cued fear acquisition. The pattern of the contextual memory deficit and the disruption of local PL firing during optogenetic silencing of VH-PL suggest that the VH continuously updates the PL with the current contextual state of the animal, which, when disrupted during memory acquisition, is detrimental to the subsequent rapid retrieval of aversive contextual associations.

SIGNIFICANCE STATEMENT Learning to anticipate threat from available contextual and discrete cues is crucial for survival. The prelimbic cortex is required for forming fear memories when temporal or contextual complexity is involved, as in trace fear conditioning. However, the respective contribution of distinct prelimbic afferents to the temporal and contextual components of memory is not known. We report that direct input from the ventral hippocampus enables the formation of the contextual, but not trace-cued, fear memory necessary for the subsequent rapid expression of a fear response. This finding dissociates the contextual and working-memory contributions of prelimbic cortex to the formation of a fear memory and demonstrates the crucial role for hippocampal input in contextual fear learning.




ia

Circuit Stability to Perturbations Reveals Hidden Variability in the Balance of Intrinsic and Synaptic Conductances

Neurons and circuits each with a distinct balance of intrinsic and synaptic conductances can generate similar behavior but sometimes respond very differently to perturbation. Examining a large family of circuit models with non-identical neurons and synapses underlying rhythmic behavior, we analyzed the circuits' response to modifications in single and multiple intrinsic conductances in the individual neurons. To summarize these changes over the entire range of perturbed parameters, we quantified circuit output by defining a global stability measure. Using this measure, we identified specific subsets of conductances that when perturbed generate similar behavior in diverse individuals of the population. Our unbiased clustering analysis enabled us to quantify circuit stability when simultaneously perturbing multiple conductances as a nonlinear combination of single conductance perturbations. This revealed surprising conductance combinations that can predict the response to specific perturbations, even when the remaining intrinsic and synaptic conductances are unknown. Therefore, our approach can expose hidden variability in the balance of intrinsic and synaptic conductances of the same neurons across different versions of the same circuit solely from the circuit response to perturbations. Developed for a specific family of model circuits, our quantitative approach to characterizing high-dimensional degenerate systems provides a conceptual and analytic framework to guide future theoretical and experimental studies on degeneracy and robustness.

SIGNIFICANCE STATEMENT Neural circuits can generate nearly identical behavior despite neuronal and synaptic parameters varying several-fold between individual instantiations. Yet, when these parameters are perturbed through channel deletions and mutations or environmental disturbances, seemingly identical circuits can respond very differently. What distinguishes inconsequential perturbations that barely alter circuit behavior from disruptive perturbations that drastically disturb circuit output remains unclear. Focusing on a family of rhythmic circuits, we propose a computational approach to reveal hidden variability in the intrinsic and synaptic conductances in seemingly identical circuits based solely on circuit output to different perturbations. We uncover specific conductance combinations that work similarly to maintain stability and predict the effect of changing multiple conductances simultaneously, which often results from neuromodulation or injury.




ia

Rapid Release of Ca2+ from Endoplasmic Reticulum Mediated by Na+/Ca2+ Exchange

Phototransduction in Drosophila is mediated by phospholipase C (PLC) and Ca2+-permeable TRP channels, but the function of endoplasmic reticulum (ER) Ca2+ stores in this important model for Ca2+ signaling remains obscure. We therefore expressed a low affinity Ca2+ indicator (ER-GCaMP6-150) in the ER, and measured its fluorescence both in dissociated ommatidia and in vivo from intact flies of both sexes. Blue excitation light induced a rapid (tau ~0.8 s), PLC-dependent decrease in fluorescence, representing depletion of ER Ca2+ stores, followed by a slower decay, typically reaching ~50% of initial dark-adapted levels, with significant depletion occurring under natural levels of illumination. The ER stores refilled in the dark within 100–200 s. Both rapid and slow store depletion were largely unaffected in InsP3 receptor mutants, but were much reduced in trp mutants. Strikingly, rapid (but not slow) depletion of ER stores was blocked by removing external Na+ and in mutants of the Na+/Ca2+ exchanger, CalX, which we immuno-localized to ER membranes in addition to its established localization in the plasma membrane. Conversely, overexpression of calx greatly enhanced rapid depletion. These results indicate that rapid store depletion is mediated by Na+/Ca2+ exchange across the ER membrane induced by Na+ influx via the light-sensitive channels. Although too slow to be involved in channel activation, this Na+/Ca2+ exchange-dependent release explains the decades-old observation of a light-induced rise in cytosolic Ca2+ in photoreceptors exposed to Ca2+-free solutions.

SIGNIFICANCE STATEMENT Phototransduction in Drosophila is mediated by phospholipase C, which activates TRP cation channels by an unknown mechanism. Despite much speculation, it is unknown whether endoplasmic reticulum (ER) Ca2+ stores play any role. We therefore engineered flies expressing a genetically encoded Ca2+ indicator in the photoreceptor ER. Although NCX Na+/Ca2+ exchangers are classically believed to operate only at the plasma membrane, we demonstrate a rapid light-induced depletion of ER Ca2+ stores mediated by Na+/Ca2+ exchange across the ER membrane. This NCX-dependent release was too slow to be involved in channel activation, but explains the decades-old observation of a light-induced rise in cytosolic Ca2+ in photoreceptors bathed in Ca2+-free solutions.




ia

Alpha Activity Reflects the Magnitude of an Individual Bias in Human Perception

Biases in sensory perception can arise from both experimental manipulations and personal trait-like features. These idiosyncratic biases and their neural underpinnings are often overlooked in studies on the physiology underlying perception. A potential candidate mechanism reflecting such idiosyncratic biases could be spontaneous alpha band activity, a prominent brain rhythm known to influence perceptual reports in general. Using a temporal order judgment task, we here tested the hypothesis that alpha power reflects the overcoming of an idiosyncratic bias. Importantly, to understand the interplay between idiosyncratic biases and contextual (temporary) biases induced by experimental manipulations, we quantified this relation before and after temporal recalibration. Using EEG recordings in human participants (male and female), we find that prestimulus frontal alpha power correlates with the tendency to respond relative to an own idiosyncratic bias, with stronger α leading to responses matching the bias. In contrast, alpha power does not predict response correctness. These results also hold after temporal recalibration and are specific to the alpha band, suggesting that alpha band activity reflects, directly or indirectly, processes that help to overcome an individual's momentary bias in perception. We propose that combined with established roles of parietal α in the encoding of sensory information frontal α reflects complementary mechanisms influencing perceptual decisions.

SIGNIFICANCE STATEMENT The brain is a biased organ, frequently generating systematically distorted percepts of the world, leading each of us to evolve in our own subjective reality. However, such biases are often overlooked or considered noise when studying the neural mechanisms underlying perception. We show that spontaneous alpha band activity predicts the degree of biasedness of human choices in a time perception task, suggesting that alpha activity indexes processes needed to overcome an individual's idiosyncratic bias. This result provides a window onto the neural underpinnings of subjective perception, and offers the possibility to quantify or manipulate such priors in future studies.




ia

An Amygdalo-Parabrachial Pathway Regulates Pain Perception and Chronic Pain

The parabrachial (PB) complex mediates both ascending nociceptive signaling and descending pain modulatory information in the affective/emotional pain pathway. We have recently reported that chronic pain is associated with amplified activity of PB neurons in a rat model of neuropathic pain. Here we demonstrate that similar activity amplification occurs in mice, and that this is related to suppressed inhibition to lateral parabrachial (LPB) neurons from the CeA in animals of either sex. Animals with pain after chronic constriction injury of the infraorbital nerve (CCI-Pain) displayed higher spontaneous and evoked activity in PB neurons, and a dramatic increase in after-discharges, responses that far outlast the stimulus, compared with controls. LPB neurons in CCI-Pain animals showed a reduction in inhibitory, GABAergic inputs. We show that, in both rats and mice, LPB contains few GABAergic neurons, and that most of its GABAergic inputs arise from CeA. These CeA GABA neurons express dynorphin, somatostatin, and/or corticotropin releasing hormone. We find that the efficacy of this CeA-LPB pathway is suppressed in chronic pain. Further, optogenetically stimulating this pathway suppresses acute pain, and inhibiting it, in naive animals, evokes pain behaviors. These findings demonstrate that the CeA-LPB pathway is critically involved in pain regulation, and in the pathogenesis of chronic pain.

SIGNIFICANCE STATEMENT We describe a novel pathway, consisting of inhibition by dynorphin, somatostatin, and corticotropin-releasing hormone-expressing neurons in the CeA that project to the parabrachial nucleus. We show that this pathway regulates the activity of pain-related neurons in parabrachial nucleus, and that, in chronic pain, this inhibitory pathway is suppressed, and that this suppression is causally related to pain perception. We propose that this amygdalo-parabrachial pathway is a key regulator of both chronic and acute pain, and a novel target for pain relief.




ia

Emotional Stress Induces Structural Plasticity in Bergmann Glial Cells via an AC5-CPEB3-GluA1 Pathway

Stress alters brain function by modifying the structure and function of neurons and astrocytes. The fine processes of astrocytes are critical for the clearance of neurotransmitters during synaptic transmission. Thus, experience-dependent remodeling of glial processes is anticipated to alter the output of neural circuits. However, the molecular mechanisms that underlie glial structural plasticity are not known. Here we show that a single exposure of male and female mice to an acute stress produced a long-lasting retraction of the lateral processes of cerebellar Bergmann glial cells. These cells express the GluA1 subunit of AMPA-type glutamate receptors, and GluA1 knockdown is known to shorten the length of glial processes. We found that stress reduced the level of GluA1 protein and AMPA receptor-mediated currents in Bergmann glial cells, and these effects were absent in mice devoid of CPEB3, a protein that binds to GluA1 mRNA and regulates GluA1 protein synthesis. Administration of a β-adrenergic receptor blocker attenuated the reduction in GluA1, and deletion of adenylate cyclase 5 prevented GluA1 suppression. Therefore, stress suppresses GluA1 protein synthesis via an adrenergic/adenylyl cyclase/CPEB3 pathway, and reduces the length of astrocyte lateral processes. Our results identify a novel mechanism for GluA1 subunit plasticity in non-neuronal cells and suggest a previously unappreciated role for AMPA receptors in stress-induced astrocytic remodeling.

SIGNIFICANCE STATEMENT Astrocytes play important roles in synaptic transmission by extending fine processes around synapses. In this study, we showed that a single exposure to an acute stress triggered a retraction of lateral/fine processes in mouse cerebellar astrocytes. These astrocytes express GluA1, a glutamate receptor subunit known to lengthen astrocyte processes. We showed that astrocytic structural changes are associated with a reduction of GluA1 protein levels. This requires activation of β-adrenergic receptors and is triggered by noradrenaline released during stress. We identified adenylyl cyclase 5, an enzyme that elevates cAMP levels, as a downstream effector and found that lowering GluA1 levels depends on CPEB3 proteins that bind to GluA1 mRNA. Therefore, stress regulates GluA1 protein synthesis via an adrenergic/adenylyl cyclase/CPEB3 pathway in astrocytes and remodels their fine processes.




ia

Basigin Associates with Integrin in Order to Regulate Perineurial Glia and Drosophila Nervous System Morphology

The Drosophila nervous system is ensheathed by a layer of outer glial cells, the perineurial glia, and a specialized extracellular matrix, the neural lamella. The function of perineurial glial cells and how they interact with the extracellular matrix are just beginning to be elucidated. Integrin-based focal adhesion complexes link the glial membrane to the extracellular matrix, but little is known about integrin's regulators in the glia. The transmembrane Ig domain protein Basigin/CD147/EMMPRIN is highly expressed in the perineurial glia surrounding the Drosophila larval nervous system. Here we show that Basigin associates with integrin at the focal adhesions to uphold the structure of the glia-extracellular matrix sheath. Knockdown of Basigin in perineurial glia using RNAi results in significant shortening of the ventral nerve cord, compression of the glia and extracellular matrix in the peripheral nerves, and reduction in larval locomotion. We determined that Basigin is expressed in close proximity to integrin at the glial membrane, and that expression of the extracellular integrin-binding domain of Basigin is sufficient to rescue peripheral glial compression. We also found that a reduction in expression of integrin at the membrane rescues the ventral nerve cord shortening, peripheral glial compression, and locomotor phenotypes, and that reduction in the integrin-binding protein Talin can partially rescue glial compression. These results identify Basigin as a potential negative regulator of integrin in the glia, supporting proper glial and extracellular matrix ensheathment of the nervous system.

SIGNIFICANCE STATEMENT The glial cells and extracellular matrix play important roles in supporting and protecting the nervous system, but the interactions between these components have not been well characterized. Our study identified expression of a conserved Ig superfamily protein, Basigin, at the glial membrane of Drosophila where it associates with the integrin-based focal adhesion complexes to ensure proper ensheathment of the CNS and PNS. Loss of Basigin in the glia results in an overall compression of the nervous system due to integrin dysregulation, which causes locomotor defects in the animals. This underlies the importance of glia-matrix communication for structural and functional support of the nervous system.




ia

The VGF-derived Peptide TLQP21 Impairs Purinergic Control of Chemotaxis and Phagocytosis in Mouse Microglia

Microglial cells are considered as sensors of brain pathology by detecting any sign of brain lesions, infections, or dysfunction and can influence the onset and progression of neurological diseases. They are capable of sensing their neuronal environment via many different signaling molecules, such as neurotransmitters, neurohormones and neuropeptides. The neuropeptide VGF has been associated with many metabolic and neurological disorders. TLQP21 is a VGF-derived peptide and has been shown to signal via C3aR1 and C1qBP receptors. The effect of TLQP21 on microglial functions in health or disease is not known. Studying microglial cells in acute brain slices, we found that TLQP21 impaired metabotropic purinergic signaling. Specifically, it attenuated the ATP-induced activation of a K+ conductance, the UDP-stimulated phagocytic activity, and the ATP-dependent laser lesion-induced process outgrowth. These impairments were reversed by blocking C1qBP, but not C3aR1 receptors. While microglia in brain slices from male mice lack C3aR1 receptors, both receptors are expressed in primary cultured microglia. In addition to the negative impact on purinergic signaling, we found stimulating effects of TLQP21 in cultured microglia, which were mediated by C3aR1 receptors: it directly evoked membrane currents, stimulated basal phagocytic activity, evoked intracellular Ca2+ transient elevations, and served as a chemotactic signal. We conclude that TLQP21 has differential effects on microglia depending on C3aR1 activation or C1qBP-dependent attenuation of purinergic signaling. Thus, TLQP21 can modulate the functional phenotype of microglia, which may have an impact on their function in health and disease.

SIGNIFICANCE STATEMENT The neuropeptide VGF and its peptides have been associated with many metabolic and neurological disorders. TLQP21 is a VGF-derived peptide that activates C1qBP receptors, which are expressed by microglia. We show here, for the first time, that TLQP21 impairs P2Y-mediated purinergic signaling and related functions. These include modulation of phagocytic activity and responses to injury. As purinergic signaling is central for microglial actions in the brain, this TLQP21-mediated mechanism might regulate microglial activity in health and disease. We furthermore show that, in addition to C1qBP, functional C3aR1 responses contribute to TLQP21 action on microglia. However, C3aR1 responses were only present in primary cultures but not in situ, suggesting that the expression of these receptors might vary between different microglial activation states.




ia

Striatal Nurr1 Facilitates the Dyskinetic State and Exacerbates Levodopa-Induced Dyskinesia in a Rat Model of Parkinson's Disease

The transcription factor Nurr1 has been identified to be ectopically induced in the striatum of rodents expressing l-DOPA-induced dyskinesia (LID). In the present study, we sought to characterize Nurr1 as a causative factor in LID expression. We used rAAV2/5 to overexpress Nurr1 or GFP in the parkinsonian striatum of LID-resistant Lewis or LID-prone Fischer-344 (F344) male rats. In a second cohort, rats received the Nurr1 agonist amodiaquine (AQ) together with l-DOPA or ropinirole. All rats received a chronic DA agonist and were evaluated for LID severity. Finally, we performed single-unit recordings and dendritic spine analyses on striatal medium spiny neurons (MSNs) in drug-naïve rAAV-injected male parkinsonian rats. rAAV-GFP injected LID-resistant hemi-parkinsonian Lewis rats displayed mild LID and no induction of striatal Nurr1 despite receiving a high dose of l-DOPA. However, Lewis rats overexpressing Nurr1 developed severe LID. Nurr1 agonism with AQ exacerbated LID in F344 rats. We additionally determined that in l-DOPA-naïve rats striatal rAAV-Nurr1 overexpression (1) increased cortically-evoked firing in a subpopulation of identified striatonigral MSNs, and (2) altered spine density and thin-spine morphology on striatal MSNs; both phenomena mimicking changes seen in dyskinetic rats. Finally, we provide postmortem evidence of Nurr1 expression in striatal neurons of l-DOPA-treated PD patients. Our data demonstrate that ectopic induction of striatal Nurr1 is capable of inducing LID behavior and associated neuropathology, even in resistant subjects. These data support a direct role of Nurr1 in aberrant neuronal plasticity and LID induction, providing a potential novel target for therapeutic development.

SIGNIFICANCE STATEMENT The transcription factor Nurr1 is ectopically induced in striatal neurons of rats exhibiting levodopa-induced dyskinesia [LID; a side-effect to dopamine replacement strategies in Parkinson's disease (PD)]. Here we asked whether Nurr1 is causing LID. Indeed, rAAV-mediated expression of Nurr1 in striatal neurons was sufficient to overcome LID-resistance, and Nurr1 agonism exacerbated LID severity in dyskinetic rats. Moreover, we found that expression of Nurr1 in l-DOPA naïve hemi-parkinsonian rats resulted in the formation of morphologic and electrophysiological signatures of maladaptive neuronal plasticity; a phenomenon associated with LID. Finally, we determined that ectopic Nurr1 expression can be found in the putamen of l-DOPA-treated PD patients. These data suggest that striatal Nurr1 is an important mediator of the formation of LID.