turbocharger

Magnetized nut for fastening a compressor wheel of an exhaust turbocharger to the turbo shaft, and method for the production thereof

A magnetized nut for fastening a compressor wheel of an exhaust turbocharger to a turbo shaft. The nut has a base body made of a non-magnetic material forming a hollow space for accommodating a magnetic material, and a method for the production of the magnetized nut. In order to provide a magnetized nut that is produced in a simple and cost-effective manner and ensures as equal a distribution of mass as possible with regard to the rotational axis of the nut, the magnetic material is introduced into the hollow space using injection molding.




turbocharger

Turbocharger arrangement for an internal combustion engine

A turbocharger arrangement in an internal combustion engine is provided. The turbocharger arrangement includes a turbocharger housing surrounding a sealed inner space and a shaft extending through the turbocharger housing. The turbocharger arrangement further includes a turbine wheel arranged on the shaft and driving a compressor unit, a bearing arrangement mounting the shaft in the turbocharger housing, an oil supply device lubricating the bearing arrangement, and a pressure changing unit in fluidic communication with the sealed inner space configured to adjust the pressure in the sealed inner space based on engine operating conditions.




turbocharger

Linear actuator for a variable-geometry member of a turbocharger, and a turbocharger incorporating same

A linear actuator for a variable-geometry member of a turbocharger includes a piston/rod assembly that can axially translate and also pivot to a limited extent. A permanent magnet is mounted in a fixed position within the actuator. A non-magnetized flux carrier is mounted in the piston/rod assembly, and its movement alters the magnetic field of the magnet. A Halls effects sensor detects the magnetic field and the signals produced by the sensor are used for determining axial position of the piston/rod assembly.




turbocharger

Control of balance drift in turbocharger rotating assembly

A turbocharger for an internal combustion engine includes a bearing housing with a bearing bore and a thrust wall. The bearing housing includes a journal bearing disposed within the bore. The turbocharger also includes a shaft supported by the journal bearing for rotation about an axis within the bore. The turbocharger also includes a turbine wheel fixed to the shaft and configured to be rotated about the axis by the engine's post-combustion gasses. The turbocharger additionally includes a compressor wheel fixed to the shaft and configured to pressurize an ambient airflow. Furthermore, the turbocharger includes a thrust bearing assembly pressed onto the shaft and configured to transmit thrust forces developed by the turbine wheel to the thrust wall. Pressing the thrust bearing assembly onto the shaft minimizes radial motion between the thrust bearing assembly and the shaft. An internal combustion engine employing such a turbocharger is also disclosed.




turbocharger

Fluid drive mechanism for turbocharger

A turbocharger for an internal combustion engine includes a shaft, a first turbine wheel, a compressor wheel, and a second turbine wheel. The shaft includes a first end and a second end and is supported for rotation about an axis. The first turbine wheel is mounted on the shaft proximate to the first end and configured to be rotated about the axis by post-combustion gasses emitted by the engine. The compressor wheel is mounted on the shaft between the first and second ends and configured to pressurize an airflow being received from the ambient for delivery to the engine. The second turbine wheel is mounted on the shaft proximate to the second end and configured to be rotated about the axis by a pressurized fluid. An internal combustion engine employing such a turbocharger is also disclosed.




turbocharger

DUAL VOLUTE TURBOCHARGER TO OPTIMIZE PULSE ENERGY SEPARATION FOR FUEL ECONOMY AND EGR UTILIZATION VIA ASYMMETRIC DUAL VOLUTES

A product for use in a turbocharger system. A turbine housing may define a center core that is circular in shape with a circumference. The turbine housing may define a first volute that extends for a length around only a part of the circumference of the center core, and a second volute that may be positioned radially outside the first volute and that may extend entirely around the circumference of the center core. The first volute and the second volute may define first and second exhaust gas passages through the turbine housing that may be asymmetric. All points of the second volute may be radially outside the first volute from the center core over the entire length of the first volute.