splice

tna Launches the ‘Perfect Pair,’ tna robag 3e and tna auto-splice 3

tna enables efficiency gains with the launch of the ‘Perfect Pair’ - the tna robag® 3e and tna auto-splice 3.




splice

Site-specific deacylation by ABHD17a controls BK channel splice variant activity [Signal Transduction]

S-Acylation, the reversible post-translational lipid modification of proteins, is an important mechanism to control the properties and function of ion channels and other polytopic transmembrane proteins. However, although increasing evidence reveals the role of diverse acyl protein transferases (zDHHC) in controlling ion channel S-acylation, the acyl protein thioesterases that control ion channel deacylation are very poorly defined. Here we show that ABHD17a (α/β-hydrolase domain-containing protein 17a) deacylates the stress-regulated exon domain of large conductance voltage- and calcium-activated potassium (BK) channels inhibiting channel activity independently of effects on channel surface expression. Importantly, ABHD17a deacylates BK channels in a site-specific manner because it has no effect on the S-acylated S0–S1 domain conserved in all BK channels that controls membrane trafficking and is deacylated by the acyl protein thioesterase Lypla1. Thus, distinct S-acylated domains in the same polytopic transmembrane protein can be regulated by different acyl protein thioesterases revealing mechanisms for generating both specificity and diversity for these important enzymes to control the properties and functions of ion channels.




splice

Branch site recognition by the spliceosome [REVIEW]

The spliceosome is a eukaryotic multimegadalton RNA–protein complex that removes introns from transcripts. The spliceosome ensures the selection of each exon-intron boundary through multiple recognition events. Initially, the 5' splice site (5' SS) and branch site (BS) are bound by the U1 small nuclear ribonucleoprotein (snRNP) and the U2 snRNP, respectively, while the 3' SS is mostly determined by proximity to the branch site. A large number of splicing factors recognize the splice sites and recruit the snRNPs before the stable binding of the snRNPs occurs by base-pairing the snRNA to the transcript. Fidelity of this process is crucial, as mutations in splicing factors and U2 snRNP components are associated with many diseases. In recent years, major advances have been made in understanding how splice sites are selected in Saccharomyces cerevisiae and humans. Here, I review and discuss the current understanding of the recognition of splice sites by the spliceosome with a focus on recognition and binding of the branch site by the U2 snRNP in humans.




splice

Scientists splice genes from roses and celery to create superflower

New rose will be less prone to wilting and will allow for longer lasting Valentine's Day bouquets.



  • Research & Innovations

splice

Optical fiber fusion splicer

An optical fiber fusion splicer includes: a windshield cover having a rotating shaft and rotating around the rotating shaft so as to be openable and closable; a cable member wrapping unit coupled and fixed to the windshield cover on the same axis as the rotating shaft of the windshield cover or formed as a portion of the windshield cover, the cable member wrapping unit being rotatable in a normal direction or in a reverse direction around the rotating shaft; a first cable member winding unit that is a rotary pulley, a non-rotary pulley, or a rotary gear; and a closed-loop member including a deformable cable member wound around the cable member wrapping unit and the first cable member winding unit, the closed-loop member constituting a closed loop.




splice

Optical fiber fusion splicer

An optical fiber fusion splicer that heats and fusion-splices optical fibers to each other, the optical fiber fusion splicer includes: a coating clamp installation base; a coating clamp that is attached to the coating clamp installation base and has a coating clamp lid that is openable and closable; and a first power source for advancing the coating clamp installation base and opening the coating clamp lid. An operation of opening the coating clamp lid is performed using the first power source after the fusion splicing is completed.




splice

Rope having a spliced eye, corresponding method of forming an eye and use of the rope

Rope (4) having an eye (2). The rope (4) comprises a first rope portion (8) and a second rope portion (10). The first rope portion (8) and the second rope portion (10) are spliced into each other for forming a spliced connection for obtaining the eye (2). The first rope portion (8) and the second rope portion (10) are formed from an end portion of the rope (4).




splice

XLN Audio releases RC-20 Retro Color via Splice Rent-To-Own

XLN Audio has partnered with leading music production platform Splice to make one of its most popular production tools available at a more musician-friendly price point for the first time. XLN’s RC-20 Retro Color is now available to producers for the introductory rate of $4.99 USD/month (for 20 months) through Splice Rent-to-Own, a unique, musician-friendly […]

The post XLN Audio releases RC-20 Retro Color via Splice Rent-To-Own appeared first on rekkerd.org.




splice

Splice launches new sounds from Mario Luciano, Nicky Romero, Josh Pan and X&G, and !llmind

Splice has launched some new samples and presets on its Splice Sounds label. Mario Luciano Sample Pack Vol. 2 — Musician, composer, and arranger, Mario Luciano is back with his second volume of sounds for Splice. Using 100% all-analog keyboards, instruments, and vintage mixing equipment to craft his samples, you’ll find some truly unique gems […]

The post Splice launches new sounds from Mario Luciano, Nicky Romero, Josh Pan and X&G, and !llmind appeared first on rekkerd.org.




splice

Soundfly Launches New ‘The Art Of Hip-Hop Production’ Course In Partnership With Splice

Soundfly Offers New Hip-hop Production Class Taught By Charles "Blvk Samurai" Burchell With Two Free Months Of Splice Samples Included.




splice

G{alpha}q splice variants mediate phototransduction, rhodopsin synthesis, and retinal integrity in Drosophila [Signal Transduction]

Heterotrimeric G proteins mediate a variety of signaling processes by coupling G protein–coupled receptors to intracellular effector molecules. In Drosophila, the Gαq gene encodes several Gαq splice variants, with the Gαq1 isoform protein playing a major role in fly phototransduction. However, Gαq1 null mutant flies still exhibit a residual light response, indicating that other Gαq splice variants or additional Gq α subunits are involved in phototransduction. Here, we isolated a mutant fly with no detectable light responses, decreased rhodopsin (Rh) levels, and rapid retinal degeneration. Using electrophysiological and genetic studies, biochemical assays, immunoblotting, real-time RT-PCR, and EM analysis, we found that mutations in the Gαq gene disrupt light responses and demonstrate that the Gαq3 isoform protein is responsible for the residual light response in Gαq1 null mutants. Moreover, we report that Gαq3 mediates rhodopsin synthesis. Depletion of all Gαq splice variants led to rapid light-dependent retinal degeneration, due to the formation stable Rh1-arrestin 2 (Arr2) complexes. Our findings clarify essential roles of several different Gαq splice variants in phototransduction and retinal integrity in Drosophila and reveal that Gαq3 functions in rhodopsin synthesis.




splice

G{alpha}q splice variants mediate phototransduction, rhodopsin synthesis, and retinal integrity in Drosophila [Signal Transduction]

Heterotrimeric G proteins mediate a variety of signaling processes by coupling G protein–coupled receptors to intracellular effector molecules. In Drosophila, the Gαq gene encodes several Gαq splice variants, with the Gαq1 isoform protein playing a major role in fly phototransduction. However, Gαq1 null mutant flies still exhibit a residual light response, indicating that other Gαq splice variants or additional Gq α subunits are involved in phototransduction. Here, we isolated a mutant fly with no detectable light responses, decreased rhodopsin (Rh) levels, and rapid retinal degeneration. Using electrophysiological and genetic studies, biochemical assays, immunoblotting, real-time RT-PCR, and EM analysis, we found that mutations in the Gαq gene disrupt light responses and demonstrate that the Gαq3 isoform protein is responsible for the residual light response in Gαq1 null mutants. Moreover, we report that Gαq3 mediates rhodopsin synthesis. Depletion of all Gαq splice variants led to rapid light-dependent retinal degeneration, due to the formation stable Rh1-arrestin 2 (Arr2) complexes. Our findings clarify essential roles of several different Gαq splice variants in phototransduction and retinal integrity in Drosophila and reveal that Gαq3 functions in rhodopsin synthesis.




splice

G{alpha}q splice variants mediate phototransduction, rhodopsin synthesis, and retinal integrity in Drosophila [Signal Transduction]

Heterotrimeric G proteins mediate a variety of signaling processes by coupling G protein–coupled receptors to intracellular effector molecules. In Drosophila, the Gαq gene encodes several Gαq splice variants, with the Gαq1 isoform protein playing a major role in fly phototransduction. However, Gαq1 null mutant flies still exhibit a residual light response, indicating that other Gαq splice variants or additional Gq α subunits are involved in phototransduction. Here, we isolated a mutant fly with no detectable light responses, decreased rhodopsin (Rh) levels, and rapid retinal degeneration. Using electrophysiological and genetic studies, biochemical assays, immunoblotting, real-time RT-PCR, and EM analysis, we found that mutations in the Gαq gene disrupt light responses and demonstrate that the Gαq3 isoform protein is responsible for the residual light response in Gαq1 null mutants. Moreover, we report that Gαq3 mediates rhodopsin synthesis. Depletion of all Gαq splice variants led to rapid light-dependent retinal degeneration, due to the formation stable Rh1-arrestin 2 (Arr2) complexes. Our findings clarify essential roles of several different Gαq splice variants in phototransduction and retinal integrity in Drosophila and reveal that Gαq3 functions in rhodopsin synthesis.





splice

Visualizing Association of the Retroviral Gag Protein with Unspliced Viral RNA in the Nucleus

ABSTRACT

Packaging of genomic RNA (gRNA) by retroviruses is essential for infectivity, yet the subcellular site of the initial interaction between the Gag polyprotein and gRNA remains poorly defined. Because retroviral particles are released from the plasma membrane, it was previously thought that Gag proteins initially bound to gRNA in the cytoplasm or at the plasma membrane. However, the Gag protein of the avian retrovirus Rous sarcoma virus (RSV) undergoes active nuclear trafficking, which is required for efficient gRNA encapsidation (L. Z. Scheifele, R. A. Garbitt, J. D. Rhoads, and L. J. Parent, Proc Natl Acad Sci U S A 99:3944–3949, 2002, https://doi.org/10.1073/pnas.062652199; R. Garbitt-Hirst, S. P. Kenney, and L. J. Parent, J Virol 83:6790–6797, 2009, https://doi.org/10.1128/JVI.00101-09). These results raise the intriguing possibility that the primary contact between Gag and gRNA might occur in the nucleus. To examine this possibility, we created a RSV proviral construct that includes 24 tandem repeats of MS2 RNA stem-loops, making it possible to track RSV viral RNA (vRNA) in live cells in which a fluorophore-conjugated MS2 coat protein is coexpressed. Using confocal microscopy, we observed that both wild-type Gag and a nuclear export mutant (Gag.L219A) colocalized with vRNA in the nucleus. In live-cell time-lapse images, the wild-type Gag protein trafficked together with vRNA as a single ribonucleoprotein (RNP) complex in the nucleoplasm near the nuclear periphery, appearing to traverse the nuclear envelope into the cytoplasm. Furthermore, biophysical imaging methods suggest that Gag and the unspliced vRNA physically interact in the nucleus. Taken together, these data suggest that RSV Gag binds unspliced vRNA to export it from the nucleus, possibly for packaging into virions as the viral genome.

IMPORTANCE Retroviruses cause severe diseases in animals and humans, including cancer and acquired immunodeficiency syndromes. To propagate infection, retroviruses assemble new virus particles that contain viral proteins and unspliced vRNA to use as gRNA. Despite the critical requirement for gRNA packaging, the molecular mechanisms governing the identification and selection of gRNA by the Gag protein remain poorly understood. In this report, we demonstrate that the Rous sarcoma virus (RSV) Gag protein colocalizes with unspliced vRNA in the nucleus in the interchromatin space. Using live-cell confocal imaging, RSV Gag and unspliced vRNA were observed to move together from inside the nucleus across the nuclear envelope, suggesting that the Gag-gRNA complex initially forms in the nucleus and undergoes nuclear export into the cytoplasm as a viral ribonucleoprotein (vRNP) complex.




splice

Splicing systems for studying signaling to the spliceosome