spacetime

The $kappa$-Newtonian and $kappa$-Carrollian algebras and their noncommutative spacetimes. (arXiv:2003.03921v2 [hep-th] UPDATED)

We derive the non-relativistic $c oinfty$ and ultra-relativistic $c o 0$ limits of the $kappa$-deformed symmetries and corresponding spacetime in (3+1) dimensions, with and without a cosmological constant. We apply the theory of Lie bialgebra contractions to the Poisson version of the $kappa$-(A)dS quantum algebra, and quantize the resulting contracted Poisson-Hopf algebras, thus giving rise to the $kappa$-deformation of the Newtonian (Newton-Hooke and Galilei) and Carrollian (Para-Poincar'e, Para-Euclidean and Carroll) quantum symmetries, including their deformed quadratic Casimir operators. The corresponding $kappa$-Newtonian and $kappa$-Carrollian noncommutative spacetimes are also obtained as the non-relativistic and ultra-relativistic limits of the $kappa$-(A)dS noncommutative spacetime. These constructions allow us to analyze the non-trivial interplay between the quantum deformation parameter $kappa$, the curvature parameter $eta$ and the speed of light parameter $c$.




spacetime

Semiglobal non-oscillatory big bang singular spacetimes for the Einstein-scalar field system. (arXiv:2005.03395v1 [math-ph])

We construct semiglobal singular spacetimes for the Einstein equations coupled to a massless scalar field. Consistent with the heuristic analysis of Belinskii, Khalatnikov, Lifshitz or BKL for this system, there are no oscillations due to the scalar field. (This is much simpler than the oscillatory BKL heuristics for the Einstein vacuum equations.) Prior results are due to Andersson and Rendall in the real analytic case, and Rodnianski and Speck in the smooth near-spatially-flat-FLRW case. Similar to Andersson and Rendall we give asymptotic data at the singularity, which we refer to as final data, but our construction is not limited to real analytic solutions. This paper is a test application of tools (a graded Lie algebra formulation of the Einstein equations and a filtration) intended for the more subtle vacuum case. We use homological algebra tools to construct a formal series solution, then symmetric hyperbolic energy estimates to construct a true solution well-approximated by truncations of the formal one. We conjecture that the image of the map from final data to initial data is an open set of anisotropic initial data.




spacetime

WIRED Live - Neil deGrasse Tyson on Cosmos: A Spacetime Odyssey

Astrophysicist Neil deGrasse Tyson sits down to talk about the cultural importance of Carl Sagan’s Cosmos: A Personal Journey, and how he plans to carry on the legacy with his new version of the transformative science exploration show.




spacetime

From atoms to Higgs bosons: voyages in quasi spacetime.

Online Resource




spacetime

Something deeply hidden: quantum worlds and the emergence of spacetime / Sean Carroll

Hayden Library - QC174.12.C365 2019