rpv

Ramzan M. Zakir, MD, RPVI, FACC, FSCAI, Featured in the February 2024 Issue of GQ Magazine

Ramzan M. Zakir, MD, RPVI, FACC, FSCAI, shared his professional achievements and industry expertise in GQ magazine




rpv

Site-specific contacts enable distinct modes of TRPV1 regulation by the potassium channel Kv{beta}1 subunit [Molecular Biophysics]

Transient receptor potential vanilloid 1 (TRPV1) channel is a multimodal receptor that is responsible for nociceptive, thermal, and mechanical sensations. However, which biomolecular partners specifically interact with TRPV1 remains to be elucidated. Here, we used cDNA library screening of genes from mouse dorsal root ganglia combined with patch-clamp electrophysiology to identify the voltage-gated potassium channel auxiliary subunit Kvβ1 physically interacting with TRPV1 channel and regulating its function. The interaction was validated in situ using endogenous dorsal root ganglia neurons, as well as a recombinant expression model in HEK 293T cells. The presence of Kvβ1 enhanced the expression stability of TRPV1 channels on the plasma membrane and the nociceptive current density. Surprisingly, Kvβ1 interaction also shifted the temperature threshold for TRPV1 thermal activation. Using site-specific mapping, we further revealed that Kvβ1 interacted with the membrane-distal domain and membrane-proximal domain of TRPV1 to regulate its membrane expression and temperature-activation threshold, respectively. Our data therefore suggest that Kvβ1 is a key element in the TRPV1 signaling complex and exerts dual regulatory effects in a site-specific manner.




rpv

TRPV4 helps Piezo1 put the squeeze on pancreatic acinar cells

Alterations in calcium signaling in pancreatic acinar cells can result in pancreatitis. Although pressure changes in the pancreas can elevate cytosolic calcium (Ca2+) levels, it is not known how transient pressure-activated elevations in calcium can cause prolonged calcium changes and consequent pancreatitis. In this issue of the JCI, Swain et al. describe roles for the mechanically activated plasma membrane calcium channels Piezo1 and transient receptor potential vanilloid subfamily 4 (TRPV4) in acinar cells. The authors used genetic deletion models and cell culture systems to investigate calcium signaling. Notably, activation of the Piezo1-dependent TRPV4 pathway was independent of the cholecystokinin (CCK) stimulation pathway. These results elegantly resolve an apparent discrepancy in calcium signaling and the pathogenesis of pancreatitis in pancreatic acinar cells.




rpv

TRPV4 channel opening mediates pressure-induced pancreatitis initiated by Piezo1 activation

Elevated pressure in the pancreatic gland is the central cause of pancreatitis following abdominal trauma, surgery, endoscopic retrograde cholangiopancreatography, and gallstones. In the pancreas, excessive intracellular calcium causes mitochondrial dysfunction, premature zymogen activation, and necrosis, ultimately leading to pancreatitis. Although stimulation of the mechanically activated, calcium-permeable ion channel Piezo1 in the pancreatic acinar cell is the initial step in pressure-induced pancreatitis, activation of Piezo1 produces only transient elevation in intracellular calcium that is insufficient to cause pancreatitis. Therefore, how pressure produces a prolonged calcium elevation necessary to induce pancreatitis is unknown. We demonstrate that Piezo1 activation in pancreatic acinar cells caused a prolonged elevation in intracellular calcium levels, mitochondrial depolarization, intracellular trypsin activation, and cell death. Notably, these effects were dependent on the degree and duration of force applied to the cell. Low or transient force was insufficient to activate these pathological changes, whereas higher and prolonged application of force triggered sustained elevation in intracellular calcium, leading to enzyme activation and cell death. All of these pathological events were rescued in acinar cells treated with a Piezo1 antagonist and in acinar cells from mice with genetic deletion of Piezo1. We discovered that Piezo1 stimulation triggered transient receptor potential vanilloid subfamily 4 (TRPV4) channel opening, which was responsible for the sustained elevation in intracellular calcium that caused intracellular organelle dysfunction. Moreover, TRPV4 gene–KO mice were protected from Piezo1 agonist– and pressure-induced pancreatitis. These studies unveil a calcium signaling pathway in which a Piezo1-induced TRPV4 channel opening causes pancreatitis.




rpv

TRPV6 as a Putative Genomic Susceptibility Locus Influencing Racial Disparities in Cancer

It is well established that African Americans exhibit higher incidence, higher mortality, and more aggressive forms of some cancers, including those of breast, prostate, colon, stomach, and cervix. Here we examine the ancestral haplotype of the TRPV6 calcium channel as a putative genomic factor in this racial divide. The minor (ancestral) allele frequency is 60% in people of African ancestry, but between 1% and 11% in all other populations. Research on TRPV6 structure/function, its association with specific cancers, and the evolutionary-ecological conditions that impacted selection of its haplotypes are synthesized to provide evidence for TRPV6 as a germline susceptibility locus in cancer. Recently elucidated mechanisms of TRPV6 channel deactivation are discussed in relation to the location of the allele favored in selection, suggesting a reduced capacity to inactivate the channel in those who have the ancestral haplotype. This could result in an excessively high cellular Ca2+, which has been implicated in cancer, for those in settings where calcium intake is far higher than in their ancestral environment. A recent report associating increasing calcium intake with a pattern of increase in aggressive prostate cancer in African-American but not European-American men may be related. If TRPV6 is found to be associated with cancer, further research would be warranted to improve risk assessment and examine interventions with the aim of improving cancer outcomes for people of African ancestry.




rpv

The transient receptor potential vanilloid 4 (TRPV4) ion channel mediates protease activated receptor 1 (PAR1)-induced vascular hyperpermeability




rpv

Flavonoids isolated from loquat (Eriobotrya japonica) leaves inhibit oxidative stress and inflammation induced by cigarette smoke in COPD mice: the role of TRPV1 signaling pathways

Food Funct., 2020, 11,3516-3526
DOI: 10.1039/C9FO02921D, Paper
Tunyu Jian, Jian Chen, Xiaoqin Ding, Han Lv, Jiawei Li, Yuexian Wu, Bingru Ren, Bei Tong, Yuanyuan Zuo, Kelei Su, Weilin Li
Total flavonoids isolated from loquat leaves inhibit inflammation and oxidative stress by regulating TRPV1 and the related pathway in cigarette smoke-induced COPD mice.
The content of this RSS Feed (c) The Royal Society of Chemistry