multiband

Multiband Antenna Simulation and Wireless KPI Extraction



In this upcoming webinar, explore how to leverage the state-of-the-art high-frequency simulation capabilities of Ansys HFSS to innovate and develop advanced multiband antenna systems.

Overview

This webinar will explore how to leverage the state-of-the-art high-frequency simulation capabilities of Ansys HFSS to innovate and develop advanced multiband antenna systems. Attendees will learn how to optimize antenna performance and analyze installed performance within wireless networks. The session will also demonstrate how this approach enables users to extract valuable wireless and network KPIs, providing a comprehensive toolset for enhancing antenna design, optimizing multiband communication, and improving overall network performance. Join us to discover how Ansys HFSS can transform wireless system design and network efficiency approach.

What Attendees will Learn

  • How to design interleaved multiband antenna systems using the latest capabilities in HFSS
  • How to extract Network Key Performance Indicators
  • How to run and extract RF Channels for the dynamic environment

Who Should Attend

This webinar is valuable to anyone involved in antenna, R&D, product design, and wireless networks.

Register now for this free webinar!




multiband

Impedance matching method for a multiband antenna, and transmission or receiver channel having automatic matching

An automatic antenna impedance matching method for a radiofrequency transmission circuit. An impedance matching network is inserted between an amplifier and an antenna. The output current and voltage of the amplifier and their phase difference are measured by a variable measurement impedance, and the complex load impedance of the amplifier is deduced from this; the impedance of the antenna is calculated as a function of this complex impedance and as a function of the known current values of the impedances of the matching network. Starting from the value found for the impedance of the antenna, new values of the matching network are calculated that allow the load to be matched to the nominal impedance of the amplifier. The measurement impedance has a value controllable by the calculation processor according to the application and notably as a function of the operating frequency and of the nominal impedance of the amplifier.