math.ds

The entropy of holomorphic correspondences: exact computations and rational semigroups. (arXiv:2004.13691v1 [math.DS] CROSS LISTED)

We study two notions of topological entropy of correspondences introduced by Friedland and Dinh-Sibony. Upper bounds are known for both. We identify a class of holomorphic correspondences whose entropy in the sense of Dinh-Sibony equals the known upper bound. This provides an exact computation of the entropy for rational semigroups. We also explore a connection between these two notions of entropy.




math.ds

Entropy and Emergence of Topological Dynamical Systems. (arXiv:2005.01548v2 [math.DS] UPDATED)

A topological dynamical system $(X,f)$ induces two natural systems, one is on the probability measure spaces and other one is on the hyperspace.

We introduce a concept for these two spaces, which is called entropy order, and prove that it coincides with topological entropy of $(X,f)$. We also consider the entropy order of an invariant measure and a variational principle is established.




math.ds

Integrability of moduli and regularity of Denjoy counterexamples. (arXiv:1908.06568v4 [math.DS] UPDATED)

We study the regularity of exceptional actions of groups by $C^{1,alpha}$ diffeomorphisms on the circle, i.e. ones which admit exceptional minimal sets, and whose elements have first derivatives that are continuous with concave modulus of continuity $alpha$. Let $G$ be a finitely generated group admitting a $C^{1,alpha}$ action $ ho$ with a free orbit on the circle, and such that the logarithms of derivatives of group elements are uniformly bounded at some point of the circle. We prove that if $G$ has spherical growth bounded by $c n^{d-1}$ and if the function $1/alpha^d$ is integrable near zero, then under some mild technical assumptions on $alpha$, there is a sequence of exceptional $C^{1,alpha}$ actions of $G$ which converge to $ ho$ in the $C^1$ topology. As a consequence for a single diffeomorphism, we obtain that if the function $1/alpha$ is integrable near zero, then there exists a $C^{1,alpha}$ exceptional diffeomorphism of the circle. This corollary accounts for all previously known moduli of continuity for derivatives of exceptional diffeomorphisms. We also obtain a partial converse to our main result. For finitely generated free abelian groups, the existence of an exceptional action, together with some natural hypotheses on the derivatives of group elements, puts integrability restrictions on the modulus $alpha$. These results are related to a long-standing question of D. McDuff concerning the length spectrum of exceptional $C^1$ diffeomorphisms of the circle.




math.ds

Phase Transitions for one-dimensional Lorenz-like expanding Maps. (arXiv:2005.03558v1 [math.DS])

Given an one-dimensional Lorenz-like expanding map we prove that the conditionlinebreak $P_{top}(phi,partial mathcal{P},ell)<P_{top}(phi,ell)$ (see, subsection 2.4 for definition), introduced by Buzzi and Sarig in [1] is satisfied for all continuous potentials $phi:[0,1]longrightarrow mathbb{R}$. We apply this to prove that quasi-H"older-continuous potentials (see, subsection 2.2 for definition) have at most one equilibrium measure and we construct a family of continuous but not H"older and neither weak H"older continuous potentials for which we observe phase transitions. Indeed, this class includes all H"older and weak-H"older continuous potentials and form an open and [2].




math.ds

An alternate definition of the Parry measure. (arXiv:2005.03282v1 [math.DS])

In this paper, we give an alternate definition of the well-known Parry measure on an aperiodic subshift of finite type using correlation between the forbidden words. We use the concept of the local escape rate to obtain this definition. We also compute Perron eigenvectors corresponding to the Perron root of the associated adjacency matrix.




math.ds

On a kind of self-similar sets with complete overlaps. (arXiv:2005.03280v1 [math.DS])

Let $E$ be the self-similar set generated by the {it iterated function system} {[ f_0(x)=frac{x}{eta},quad f_1(x)=frac{x+1}{eta}, quad f_{eta+1}=frac{x+eta+1}{eta} ]}with $etage 3$. {Then} $E$ is a self-similar set with complete {overlaps}, i.e., $f_{0}circ f_{eta+1}=f_{1}circ f_1$, but $E$ is not totally self-similar.

We investigate all its generating iterated function systems, give the spectrum of $E$, and determine the Hausdorff dimension and Hausdorff measure of $E$ and of the sets which contain all points in $E$ having finite or infinite different triadic codings.




math.ds

Pointwise densities of homogeneous Cantor measure and critical values. (arXiv:2005.03269v1 [math.DS])

Let $Nge 2$ and $ hoin(0,1/N^2]$. The homogenous Cantor set $E$ is the self-similar set generated by the iterated function system

[

left{f_i(x)= ho x+frac{i(1- ho)}{N-1}: i=0,1,ldots, N-1 ight}.

]

Let $s=dim_H E$ be the Hausdorff dimension of $E$, and let $mu=mathcal H^s|_E$ be the $s$-dimensional Hausdorff measure restricted to $E$. In this paper we describe, for each $xin E$, the pointwise lower $s$-density $Theta_*^s(mu,x)$ and upper $s$-density $Theta^{*s}(mu, x)$ of $mu$ at $x$. This extends some early results of Feng et al. (2000). Furthermore, we determine two critical values $a_c$ and $b_c$ for the sets

[

E_*(a)=left{xin E: Theta_*^s(mu, x)ge a ight}quad extrm{and}quad E^*(b)=left{xin E: Theta^{*s}(mu, x)le b ight}

] respectively, such that $dim_H E_*(a)>0$ if and only if $a<a_c$, and that $dim_H E^*(b)>0$ if and only if $b>b_c$. We emphasize that both values $a_c$ and $b_c$ are related to the Thue-Morse type sequences, and our strategy to find them relies on ideas from open dynamics and techniques from combinatorics on words.




math.ds

Exponential decay for negative feedback loop with distributed delay. (arXiv:2005.03136v1 [math.DS])

We derive sufficient conditions for exponential decay of solutions of the delay negative feedback equation with distributed delay. The conditions are written in terms of exponential moments of the distribution. Our method only uses elementary tools of calculus and is robust towards possible extensions to more complex settings, in particular, systems of delay differential equations. We illustrate the applicability of the method to particular distributions - Dirac delta, Gamma distribution, uniform and truncated normal distributions.




math.ds

Continuation of relative equilibria in the $n$--body problem to spaces of constant curvature. (arXiv:2005.03114v1 [math.DS])

We prove that all non-degenerate relative equilibria of the planar Newtonian $n$--body problem can be continued to spaces of constant curvature $kappa$, positive or negative, for small enough values of this parameter. We also compute the extension of some classical relative equilibria to curved spaces using numerical continuation. In particular, we extend Lagrange's triangle configuration with different masses to both positive and negative curvature spaces.




math.ds

A note on Tonelli Lagrangian systems on $mathbb{T}^2$ with positive topological entropy on high energy level. (arXiv:2005.03108v1 [math.DS])

In this work we study the dynamical behavior Tonelli Lagrangian systems defined on the tangent bundle of the torus $mathbb{T}^2=mathbb{R}^2 / mathbb{Z}^2$. We prove that the Lagrangian flow restricted to a high energy level $ E_L^{-1}(c)$ (i.e $ c> c_0(L)$) has positive topological entropy if the flow satisfies the Kupka-Smale propriety in $ E_L^{-1}(c)$ (i.e, all closed orbit with energy $c$ are hyperbolic or elliptic and all heteroclinic intersections are transverse on $E_L^{-1}(c)$). The proof requires the use of well-known results in Aubry-Mather's Theory.




math.ds

Conley's fundamental theorem for a class of hybrid systems. (arXiv:2005.03217v1 [math.DS])

We establish versions of Conley's (i) fundamental theorem and (ii) decomposition theorem for a broad class of hybrid dynamical systems. The hybrid version of (i) asserts that a globally-defined "hybrid complete Lyapunov function" exists for every hybrid system in this class. Motivated by mechanics and control settings where physical or engineered events cause abrupt changes in a system's governing dynamics, our results apply to a large class of Lagrangian hybrid systems (with impacts) studied extensively in the robotics literature. Viewed formally, these results generalize those of Conley and Franks for continuous-time and discrete-time dynamical systems, respectively, on metric spaces. However, we furnish specific examples illustrating how our statement of sufficient conditions represents merely an early step in the longer project of establishing what formal assumptions can and cannot endow hybrid systems models with the topologically well characterized partitions of limit behavior that make Conley's theory so valuable in those classical settings.