hepa

Alert against hepatitis A in Kollam




hepa

A multifunctional “three-in-one” fluorescent theranostic system for hepatic ischemia–reperfusion injury

Chem. Sci., 2024, Advance Article
DOI: 10.1039/D4SC04962D, Edge Article
Open Access
  This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.
Jihong Liu, Dongni Yin, Wen Zhang, Xin Wang, Tony D. James, Ping Li, Bo Tang
A single-component multifunctional fluorescent theranostic system (MB-Gly) for use during hepatic ischemia-reperfusion injury (HIRI) has been developed.
To cite this article before page numbers are assigned, use the DOI form of citation above.
The content of this RSS Feed (c) The Royal Society of Chemistry




hepa

Evaluating the therapeutic potential of genetically engineered probiotic Zbiotics (ZB183) for non-alcoholic steatohepatitis (NASH) management via modulation of the cGAS-STING pathway

RSC Med. Chem., 2024, 15,3817-3836
DOI: 10.1039/D4MD00477A, Research Article
Maha Saad, Walaa Ibrahim, Amany Helmy Hasanin, Aya Magdy Elyamany, Marwa Matboli
ZBiotics administration in the NASH model downregulated the RNA panel (MAPK3, EDN1, TNF, miR-6888-5p, lncRNA RABGAP1L-DT-206), restored intestinal barrier integrity, reduced hepatic inflammation, and improved lipid profiles and liver enzymes.
The content of this RSS Feed (c) The Royal Society of Chemistry




hepa

‘Welcome’ that ‘drink’ with caution, say doctors as hepatitis A cases go up in Kozhikode

At least five to six cases of the infection being reported every day at the Government Medical College Hospital in recent weeks




hepa

Low-profile HEPA filter

A NIOSH-approved low-profile HEPA filter for CleanSpace2 respirators now is available.




hepa

Hepatitis B and C Could Be Eliminated as Public Health Problems in U.S.

It is possible to end the transmission of hepatitis B and C and prevent further sickness and deaths from the diseases, but time, considerable resources, and attention to various barriers will be required, says a new report from the National Academies of Sciences, Engineering, and Medicine.




hepa

New Report Lays Plan to Eliminate 90,000 Hepatitis B and C Deaths by 2030

Hepatitis B and C kill more than 20,000 people every year in the United States.




hepa

Introducing the CleanForce Rainbow Air Purifier: The Silent, Sleek, and Certified True Hepa Air Purifier For Large Spaces

Leveraging Cutting Edge Technology and Design, the CleanForce Rainbow Air Purifier Sets a New Industry Standard for Superior Purification Capacity at an Affordable Price




hepa

Marquis Who's Who Honors E. Shepard Farrar for Expertise in Finance and Investment Management

E. Shepard Farrar is a financial market expert who represents reacHIRE as a coach and guide




hepa

DBL HEPARIN SODIUM 5000IU/1mL (porcine mucous) injection BP ampoule (heparin sodium)

Unexpected increase in consumer demand




hepa

Dax Shepard Agrees to Take Drug Test If Kristen Bell Asks Him to

The 'Armchair Expert' host keeps drug test kits at home to assure his wife in case she ever feels unsure whether or not he's sober following his relapse last year.




hepa

¿Podemos transmitir la hepatitis?

¿Podemos transmitir la hepatitis?




hepa

SANAMENTE LA HEPATITIS 28 DE JULIO




hepa

Hepatitis: inflamación del hígado




hepa

Impact of antiretroviral therapy on liver disease progression and mortality in patients co-infected with HIV and hepatitis C: systematic review and meta-analysis

Systematic review produced by the EPPI-Centre in 2015.This systematic review aimed to evaluate the effect of HAART and ARV monotherapy on liver disease progression and liver-related mortality in individuals co-infected with HIV and hepatitis C, including in patients with haemophilia.




hepa

Regulation of hepatic secretion of apolipoprotein B-containing lipoproteins: information obtained from cultured liver cells

JL Dixon
Feb 1, 1993; 34:167-179
Reviews




hepa

Remnant lipoprotein metabolism: key pathways involving cell-surface heparan sulfate proteoglycans and apolipoprotein E

Robert W. Mahley
Jan 1, 1999; 40:1-16
Reviews




hepa

Hepatocyte nuclear factor 1{beta} suppresses canonical Wnt signaling through transcriptional repression of lymphoid enhancer-binding factor 1 [Molecular Bases of Disease]

Hepatocyte nuclear factor-1β (HNF-1β) is a tissue-specific transcription factor that is required for normal kidney development and renal epithelial differentiation. Mutations of HNF-1β produce congenital kidney abnormalities and inherited renal tubulopathies. Here, we show that ablation of HNF-1β in mIMCD3 renal epithelial cells results in activation of β-catenin and increased expression of lymphoid enhancer–binding factor 1 (LEF1), a downstream effector in the canonical Wnt signaling pathway. Increased expression and nuclear localization of LEF1 are also observed in cystic kidneys from Hnf1b mutant mice. Expression of dominant-negative mutant HNF-1β in mIMCD3 cells produces hyperresponsiveness to exogenous Wnt ligands, which is inhibited by siRNA-mediated knockdown of Lef1. WT HNF-1β binds to two evolutionarily conserved sites located 94 and 30 kb from the mouse Lef1 promoter. Ablation of HNF-1β decreases H3K27 trimethylation repressive marks and increases β-catenin occupancy at a site 4 kb upstream to Lef1. Mechanistically, WT HNF-1β recruits the polycomb-repressive complex 2 that catalyzes H3K27 trimethylation. Deletion of the β-catenin–binding domain of LEF1 in HNF-1β–deficient cells abolishes the increase in Lef1 transcription and decreases the expression of downstream Wnt target genes. The canonical Wnt target gene, Axin2, is also a direct transcriptional target of HNF-1β through binding to negative regulatory elements in the gene promoter. These findings demonstrate that HNF-1β regulates canonical Wnt target genes through long-range effects on histone methylation at Wnt enhancers and reveal a new mode of active transcriptional repression by HNF-1β.




hepa

Cholesterol sensing by CD81 is important for hepatitis C virus entry [Protein Structure and Folding]

CD81 plays a central role in a variety of physiological and pathological processes. Recent structural analysis of CD81 indicates that it contains an intramembrane cholesterol-binding pocket and that interaction with cholesterol may regulate a conformational switch in the large extracellular domain of CD81. Therefore, CD81 possesses a potential cholesterol-sensing mechanism; however, its relevance for protein function is thus far unknown. In this study we investigate CD81 cholesterol sensing in the context of its activity as a receptor for hepatitis C virus (HCV). Structure-led mutagenesis of the cholesterol-binding pocket reduced CD81–cholesterol association but had disparate effects on HCV entry, both reducing and enhancing CD81 receptor activity. We reasoned that this could be explained by alterations in the consequences of cholesterol binding. To investigate this further we performed molecular dynamic simulations of CD81 with and without cholesterol; this identified a potential allosteric mechanism by which cholesterol binding regulates the conformation of CD81. To test this, we designed further mutations to force CD81 into either the open (cholesterol-unbound) or closed (cholesterol-bound) conformation. The open mutant of CD81 exhibited reduced HCV receptor activity, whereas the closed mutant enhanced activity. These data are consistent with cholesterol sensing switching CD81 between a receptor active and inactive state. CD81 interactome analysis also suggests that conformational switching may modulate the assembly of CD81–partner protein networks. This work furthers our understanding of the molecular mechanism of CD81 cholesterol sensing, how this relates to HCV entry, and CD81's function as a molecular scaffold; these insights are relevant to CD81's varied roles in both health and disease.




hepa

CDKN2A/p16INK4a suppresses hepatic fatty acid oxidation through the AMPK{alpha}2-SIRT1-PPAR{alpha} signaling pathway [Metabolism]

In addition to their well-known role in the control of cellular proliferation and cancer, cell cycle regulators are increasingly identified as important metabolic modulators. Several GWAS have identified SNPs near CDKN2A, the locus encoding for p16INK4a (p16), associated with elevated risk for cardiovascular diseases and type-2 diabetes development, two pathologies associated with impaired hepatic lipid metabolism. Although p16 was recently shown to control hepatic glucose homeostasis, it is unknown whether p16 also controls hepatic lipid metabolism. Using a combination of in vivo and in vitro approaches, we found that p16 modulates fasting-induced hepatic fatty acid oxidation (FAO) and lipid droplet accumulation. In primary hepatocytes, p16-deficiency was associated with elevated expression of genes involved in fatty acid catabolism. These transcriptional changes led to increased FAO and were associated with enhanced activation of PPARα through a mechanism requiring the catalytic AMPKα2 subunit and SIRT1, two known activators of PPARα. By contrast, p16 overexpression was associated with triglyceride accumulation and increased lipid droplet numbers in vitro, and decreased ketogenesis and hepatic mitochondrial activity in vivo. Finally, gene expression analysis of liver samples from obese patients revealed a negative correlation between CDKN2A expression and PPARA and its target genes. Our findings demonstrate that p16 represses hepatic lipid catabolism during fasting and may thus participate in the preservation of metabolic flexibility.




hepa

A Novel Mechanism for NF-{kappa}B-activation via I{kappa}B-aggregation: Implications for Hepatic Mallory-Denk-Body Induced Inflammation

Yi Liu
Dec 1, 2020; 19:1968-1985
Research




hepa

Secretory galectin-3 induced by glucocorticoid stress triggers stemness exhaustion of hepatic progenitor cells [Signal Transduction]

Adult progenitor cell populations typically exist in a quiescent state within a controlled niche environment. However, various stresses or forms of damage can disrupt this state, which often leads to dysfunction and aging. We built a glucocorticoid (GC)-induced liver damage model of mice, found that GC stress induced liver damage, leading to consequences for progenitor cells expansion. However, the mechanisms by which niche factors cause progenitor cells proliferation are largely unknown. We demonstrate that, within the liver progenitor cells niche, Galectin-3 (Gal-3) is responsible for driving a subset of progenitor cells to break quiescence. We show that GC stress causes aging of the niche, which induces the up-regulation of Gal-3. The increased Gal-3 population increasingly interacts with the progenitor cell marker CD133, which triggers focal adhesion kinase (FAK)/AMP-activated kinase (AMPK) signaling. This results in the loss of quiescence and leads to the eventual stemness exhaustion of progenitor cells. Conversely, blocking Gal-3 with the inhibitor TD139 prevents the loss of stemness and improves liver function. These experiments identify a stress-dependent change in progenitor cell niche that directly influence liver progenitor cell quiescence and function.




hepa

ERAD deficiency promotes mitochondrial dysfunction and transcriptional rewiring in human hepatic cells [Cell Biology]

Mitochondrial dysfunction is associated with a variety of human diseases including neurodegeneration, diabetes, nonalcohol fatty liver disease (NAFLD), and cancer, but its underlying causes are incompletely understood. Using the human hepatic cell line HepG2 as a model, we show here that endoplasmic reticulum-associated degradation (ERAD), an ER protein quality control process, is critically required for mitochondrial function in mammalian cells. Pharmacological inhibition or genetic ablation of key proteins involved in ERAD increased cell death under both basal conditions and in response to proinflammatory cytokines, a situation frequently found in NAFLD. Decreased viability of ERAD-deficient HepG2 cells was traced to impaired mitochondrial functions including reduced ATP production, enhanced reactive oxygen species (ROS) accumulation, and increased mitochondrial outer membrane permeability. Transcriptome profiling revealed widespread down-regulation of genes underpinning mitochondrial functions, and up-regulation of genes associated with tumor growth and aggression. These results highlight a critical role for ERAD in maintaining mitochondrial functional and structural integrity and raise the possibility of improving cellular and organismal mitochondrial function via enhancing cellular ERAD capacity.




hepa

Deletion of lysophosphatidylcholine acyltransferase3 in myeloid cells worsens hepatic steatosis after a high fat diet

Thibaut Bourgeois
Dec 11, 2020; 0:jlr.RA120000737v1-jlr.RA120000737
Research Articles




hepa

Membrane-bound sn-1,2-diacylglycerols explain the dissociation of hepatic insulin resistance from hepatic steatosis in MTTP knockout mice

Abudukadier Abulizi
Dec 1, 2020; 61:1565-1576
Research Articles




hepa

Perilipin 5 S155 phosphorylation by PKA is required for the control of hepatic lipid metabolism and glycemic control

Stacey N Keenan
Dec 17, 2020; 0:jlr.RA120001126v1-jlr.RA120001126
Research Articles




hepa

Hepatic Deletion of Mboat7 (Lpiat1) Causes Activation of SREBP-1c and Fatty Liver [Research Articles]

Genetic variants that increase the risk of fatty liver disease (FLD) and cirrhosis have recently been identified in the proximity of membrane bound O-acyltransferase domain-containing 7 (MBOAT7).  To elucidate the link between these variants and FLD we characterized Mboat7 liver-specific knock-out mice (Mboat7-LSKO).  Chow-fed Mboat7-LSKO mice developed fatty livers and associated liver injury.  Lipidomic analysis of liver using mass spectrometry revealed a pronounced reduction in 20-carbon polyunsaturated fatty acid content in phosphatidylinositols (PIs), but not in other phospholipids. The change in fatty acid composition of PIs in these mice was associated with a marked increase in de novo lipogenesis due to activation of SREBP-1c, a transcription factor that coordinates the activation of genes encoding enzymes in the fatty acid biosynthesis pathway. Hepatic removal of both SREBP cleavage activating protein (Scap) and Mboat7 normalized hepatic triglycerides relative to Scap only hepatic knock-out showing increased SREBP-1c processing is required for Mboat7 induced steatosis.  This study reveals a clear relationship between PI fatty acid composition and regulation of hepatic fat synthesis and delineates the mechanism by which mutations in MBOAT7 cause hepatic steatosis.




hepa

Deletion of lysophosphatidylcholine acyltransferase3 in myeloid cells worsens hepatic steatosis after a high fat diet [Research Articles]

Recent studies have highlighted an important role for lysophosphatidylcholine acyltransferase 3 (LPCAT3) in controlling the PUFA composition of cell membranes in the liver and intestine. In these organs, LPCAT3 critically supports cell membrane-associated processes such as lipid absorption or lipoprotein secretion. However, the role of LPCAT3 in macrophages remains controversial. Here, we investigated LPCAT3’s role in macrophages both in vitro and in vivo in mice with atherosclerosis and obesity. To accomplish this, we used the LysMCre strategy to develop a mouse model with conditional Lpcat3 deficiency in myeloid cells (Lpcat3KOMac). We observed that partial Lpcat3 deficiency (approx. 75% reduction) in macrophages alters the PUFA composition of all phospholipid (PL) subclasses, including phosphatidylinositols and phosphatidylserines. A reduced incorporation of C20 PUFAs (mainly arachidonic acid [AA]) into PLs was associated with a redistribution of these FAs toward other cellular lipids such as cholesteryl esters. Lpcat3 deficiency had no obvious impact on macrophage inflammatory response or endoplasmic reticulum (ER) stress; however, Lpcat3KOMac macrophages exhibited a reduction in cholesterol efflux in vitro. In vivo, myeloid Lpcat3 deficiency did not affect atherosclerosis development in LDL receptor deficient mouse (Ldlr-/-) mice. Lpcat3KOMac mice on a high-fat diet displayed a mild increase in hepatic steatosis associated with alterations in several liver metabolic pathways and in liver eicosanoid composition. We conclude that alterations in AA metabolism along with myeloid Lpcat3 deficiency may secondarily affect AA homeostasis in the whole liver, leading to metabolic disorders and triglyceride accumulation.




hepa

Perilipin 5 S155 phosphorylation by PKA is required for the control of hepatic lipid metabolism and glycemic control [Research Articles]

Perilipin (PLIN) 5 is a lipid droplet-associated protein that coordinates intracellular lipolysis in highly oxidative tissues and is thought to regulate lipid metabolism in response to phosphorylation by protein kinase A (PKA). We sought to identify PKA phosphorylation sites in PLIN5 and assess their functional relevance in cultured cells and the livers of mice. We detected phosphorylation on S155, S161 and S163 of recombinant PLIN5 by PKA in vitro and identified S155 as a functionally important site for lipid metabolism. Expression of phosphorylation-defective PLIN5 S155A in Plin5 null cells resulted in decreased rates of lipolysis and triglyceride-derived fatty acid oxidation compared with cells expressing wildtype PLIN5. These differences in lipid metabolism were not associated with differences in the cellular distribution of PLIN5. Rather, FLIM-FRET analysis of protein-protein interactions showed that PLIN5 S155 phosphorylation regulates PLIN5 interaction with adipose triglyceride lipase (ATGL) at the lipid droplet, but not with the co-activator of ATGL, α-β hydrolase domain-containing 5 (ABHD5). Re-expression of PLIN5 S155A in the liver of Plin5 liver-specific null mice reduced lipolysis when compared to mice with wildtype PLIN5 re-expression, but was not associated with other changes in hepatic lipid metabolism, such as fatty acid oxidation, de novo lipogenesis and triglyceride secretion. Furthermore, glycemic control was impaired in mice with expression of PLIN5 S155A compared with mice expressing PLIN5. Together, these studies demonstrate that PLIN5 S155 is required for PKA-mediated lipolysis and builds on the body of evidence demonstrating a critical role for PLIN5 in coordinating lipid and glucose metabolism




hepa

{beta}-Carotene conversion to vitamin A delays atherosclerosis progression by decreasing hepatic lipid secretion in mice [Research Articles]

Atherosclerosis is characterized by the pathological accumulation of cholesterol-laden macrophages in the arterial wall. Atherosclerosis is also the main underlying cause of CVDs, and its development is largely driven by elevated plasma cholesterol. Strong epidemiological data find an inverse association between plasma β-carotene with atherosclerosis, and we recently showed that β-carotene oxygenase 1 (BCO1) activity, responsible for β-carotene cleavage to vitamin A, is associated with reduced plasma cholesterol in humans and mice. In this study, we explore whether intact β-carotene or vitamin A affects atherosclerosis progression in the atheroprone LDLR-deficient mice. Compared with control-fed Ldlr–/– mice, β-carotene-supplemented mice showed reduced atherosclerotic lesion size at the level of the aortic root and reduced plasma cholesterol levels. These changes were absent in Ldlr–/–/Bco1–/– mice despite accumulating β-carotene in plasma and atherosclerotic lesions. We discarded the implication of myeloid BCO1 in the development of atherosclerosis by performing bone marrow transplant experiments. Lipid production assays found that retinoic acid, the active form of vitamin A, reduced the secretion of newly synthetized triglyceride and cholesteryl ester in cell culture and mice. Overall, our findings provide insights into the role of BCO1 activity and vitamin A in atherosclerosis progression through the regulation of hepatic lipid metabolism.




hepa

Membrane-bound sn-1,2-diacylglycerols explain the dissociation of hepatic insulin resistance from hepatic steatosis in MTTP knockout mice [Research Articles]

Microsomal triglyceride transfer protein (MTTP) deficiency results in a syndrome of hypolipidemia and accelerated NAFLD. Animal models of decreased hepatic MTTP activity have revealed an unexplained dissociation between hepatic steatosis and hepatic insulin resistance. Here, we performed comprehensive metabolic phenotyping of liver-specific MTTP knockout (L-Mttp–/–) mice and age-weight matched wild-type control mice. Young (10–12-week-old) L-Mttp–/– mice exhibited hepatic steatosis and increased DAG content; however, the increase in hepatic DAG content was partitioned to the lipid droplet and was not increased in the plasma membrane. Young L-Mttp–/– mice also manifested normal hepatic insulin sensitivity, as assessed by hyperinsulinemic-euglycemic clamps, no PKC activation, and normal hepatic insulin signaling from the insulin receptor through AKT Ser/Thr kinase. In contrast, aged (10-month-old) L-Mttp–/– mice exhibited glucose intolerance and hepatic insulin resistance along with an increase in hepatic plasma membrane sn-1,2-DAG content and PKC activation. Treatment with a functionally liver-targeted mitochondrial uncoupler protected the aged L-Mttp–/– mice against the development of hepatic steatosis, increased plasma membrane sn-1,2-DAG content, PKC activation, and hepatic insulin resistance. Furthermore, increased hepatic insulin sensitivity in the aged controlled-release mitochondrial protonophore-treated L-Mttp–/– mice was not associated with any reductions in hepatic ceramide content. Taken together, these data demonstrate that differences in the intracellular compartmentation of sn-1,2-DAGs in the lipid droplet versus plasma membrane explains the dissociation of NAFLD/lipid-induced hepatic insulin resistance in young L-Mttp–/– mice as well as the development of lipid-induced hepatic insulin resistance in aged L-Mttp–/– mice.




hepa

A Novel Mechanism for NF-{kappa}B-activation via I{kappa}B-aggregation: Implications for Hepatic Mallory-Denk-Body Induced Inflammation [Research]

Mallory-Denk-bodies (MDBs) are hepatic protein aggregates associated with inflammation both clinically and in MDB-inducing models. Similar protein aggregation in neurodegenerative diseases also triggers inflammation and NF-B activation. However, the precise mechanism that links protein aggregation to NF-B-activation and inflammatory response remains unclear. Herein we find that treating primary hepatocytes with MDB-inducing agents (N-methylprotoporphyrin (NMPP), protoporphyrin IX (PPIX), or Zinc-protoporphyrin IX (ZnPP)) elicited an IBα-loss with consequent NF-B activation. Four known mechanisms of IBα-loss i.e. the canonical ubiquitin-dependent proteasomal degradation (UPD), autophagic-lysosomal degradation, calpain degradation and translational inhibition, were all probed and excluded. Immunofluorescence analyses of ZnPP-treated cells coupled with 8 M urea/CHAPS-extraction revealed that this IBα-loss was due to its sequestration along with IBβ into insoluble aggregates, thereby releasing NF-B. Through affinity pulldown, proximity biotinylation by antibody recognition, and other proteomic analyses, we verified that NF-B subunit p65, which stably interacts with IBα under normal conditions, no longer binds to it upon ZnPP-treatment. Additionally, we identified 10 proteins that interact with IBα under baseline conditions, aggregate upon ZnPP-treatment, and maintain the interaction with IBα after ZnPP-treatment, either by cosequestering into insoluble aggregates or through a different mechanism. Of these 10 proteins, the nucleoporins Nup153 and Nup358/RanBP2 were identified through RNA-interference, as mediators of IBα-nuclear import. The concurrent aggregation of IBα, NUP153, and RanBP2 upon ZnPP-treatment, synergistically precluded the nuclear entry of IBα and its consequent binding and termination of NF-B activation. This novel mechanism may account for the protein aggregate-induced inflammation observed in liver diseases, thus identifying novel targets for therapeutic intervention. Because of inherent commonalities this MDB cell model is a bona fide protoporphyric model, making these findings equally relevant to the liver inflammation associated with clinical protoporphyria.




hepa

WITHDRAWN: Extraordinary apolipoprotein oxidation in chronic hepatitis C and liver cirrhosis [13. Other]

Withdrawn by Author.




hepa

Low molecular weight heparin does not prevent VTE after knee arthroscopy, studies show




hepa

[68Ga]Ga-PSMA-11 PET/CT-Positive Hepatic Inflammatory Pseudotumor: Possible PSMA-Avid Pitfall in Nuclear Imaging




hepa

[68Ga]Ga-RAYZ-8009: A Glypican-3-Targeted Diagnostic Radiopharmaceutical for Hepatocellular Carcinoma Molecular Imaging--A First-in-Human Case Series

To date, the imaging and diagnosis of hepatocellular carcinoma (HCC) rely on CT/MRI, which have well-known limitations. Glypican-3 (GPC3) is a cell surface receptor highly expressed by HCC but not by normal or cirrhotic liver tissue. Here we report initial clinical results of GPC3-targeted PET imaging with [68Ga]Ga-DOTA-RYZ-GPC3 (RAYZ-8009), a peptide-based GPC3 ligand in patients with known or suspected HCC. Methods: [68Ga]Ga-RAYZ-8009 was obtained after labeling the peptide precursor with 68Ga from a 68Ge/68Ga generator and heating at 90°C for 10 min followed by sterile filtration. After administration of [68Ga]Ga-RAYZ-8009, a dynamic or static PET/CT scan was acquired between 45 min and 4 h after administration. Radiotracer uptake was measured by SUVs for the following tissues: suspected or actual HCC or hepatoblastoma lesions, non–tumor-bearing liver, renal cortex, blood pool in the left ventricle, and gastric fundus. Additionally, tumor–to–healthy-liver ratios (TLRs) were calculated. Results: Twenty-four patients (5 patients in the dynamic protocol; 19 patients in the static protocol) were scanned. No adverse events occurred. Two patients had no lesion detected and did not have HCC during follow-up. In total, 50 lesions were detected and analyzed. The mean SUVmax of these lesions was 19.6 (range, 2.7–95.3), and the mean SUVmean was 10.1 (range, 1.0–49.2) at approximately 60 min after administration. Uptake in non–tumor-bearing liver and blood pool rapidly decreased over time and became negligible 45 min after administration (mean SUVmean, <1.6), with a continuous decline to 4 h after administration (mean SUVmean, 1.0). The opposite was observed for HCC lesions, for which SUVs and TLRs continuously increased for up to 4 h after administration. In individual lesion analysis, TLR was the highest between 60 and 120 min after administration. Uptake in the gastric fundus gradually increased for up to 45 min (to an SUVmax of 31.3) and decreased gradually afterward. Conclusion: [68Ga]Ga-RAYZ-8009 is safe and allows for high-contrast imaging of GPC3-positive HCC, with rapid clearance from most normal organs. Thereby, [68Ga]Ga-RAYZ-8009 is promising for HCC diagnosis and staging. Further research is warranted.




hepa

Historic New Shepard Rocket Booster and Crew Capsule Will Go on Display at the Air and Space Museum

The two artifacts donated by Blue Origin achieved record-breaking feats and will extend the museum's story of trailblazing space travel into the present




hepa

May Is Viral Hepatitis Awareness Month; May 19 Hepatitis Testing Day

Dover (May 4, 2022) – The Division of Public Health (DPH) is announcing May as Viral Hepatitis Awareness Month and May 19 as Hepatitis Testing Day. There are several different viruses that can cause hepatitis. The most common type of viral hepatitis are hepatitis A, hepatitis B, and hepatitis C. Both hepatitis A and hepatitis B […]




hepa

Hepatitis E Vaccine Appears Safe, Effective

Title: Hepatitis E Vaccine Appears Safe, Effective
Category: Health News
Created: 8/23/2010 10:10:00 AM
Last Editorial Review: 8/24/2010 12:00:00 AM




hepa

New Drug Combo Helps Hard-to-Treat Hepatitis C

Title: New Drug Combo Helps Hard-to-Treat Hepatitis C
Category: Health News
Created: 8/27/2013 4:36:00 PM
Last Editorial Review: 8/28/2013 12:00:00 AM




hepa

Liver Damage From Hepatitis C More Widespread Than Thought

Title: Liver Damage From Hepatitis C More Widespread Than Thought
Category: Health News
Created: 8/27/2015 12:00:00 AM
Last Editorial Review: 8/27/2015 12:00:00 AM




hepa

Test All U.S. Adults for Hepatitis C, Expert Panel Says

Title: Test All U.S. Adults for Hepatitis C, Expert Panel Says
Category: Health News
Created: 8/27/2019 12:00:00 AM
Last Editorial Review: 8/28/2019 12:00:00 AM




hepa

Hepatitis (Viral Hepatitis A, B, C, D, E, G)

Title: Hepatitis (Viral Hepatitis A, B, C, D, E, G)
Category: Diseases and Conditions
Created: 12/31/1997 12:00:00 AM
Last Editorial Review: 8/8/2022 12:00:00 AM




hepa

Hepatitis C Infection Can Kill, But Less Than a Third of Patients Get Treatment

Title: Hepatitis C Infection Can Kill, But Less Than a Third of Patients Get Treatment
Category: Health News
Created: 8/10/2022 12:00:00 AM
Last Editorial Review: 8/10/2022 12:00:00 AM




hepa

Ontogeny of Hepatic Organic Cation Transporter-1 in Rat and Human [Articles]

The organic cation transporter (OCT)-1 mediates hepatic uptake of cationic endogenous compounds and xenobiotics. To date, limited information exists on how Oct1/OCT1 functionally develops with age in rat and human livers and how this would affect the pharmacokinetics of OCT substrates in children or juvenile animals. The functional ontogeny of rOct/hOCT was profiled in suspended rat (2–57 days old) and human hepatocytes (pediatric liver tissue donors: age 2–12 months) by determining uptake clearance of 4-[4-(dimethylamino)styryl]-N-methylpyridinium iodide (ASP+) as a known rOct/hOCT probe substrate. mRNA expression was determined in rat liver tissue corresponding to rat ages used in the functional studies, while hOCT1 mRNA expressions were determined in the same hepatocyte batches as those used for uptake studies. Maturation of rOct/hOCT activity and expression were evaluated by comparing values obtained at the various ages to the adult values. Relative to adult values (at 8 weeks), ASP+ uptake clearance in suspended rat hepatocytes aged 0, 1, 2, 3, 4, 5, and 6 weeks reached 26%, 29%, 33%, 37%, 72%, 63%, and 71%, respectively. Hepatic Oct1 mRNA expression was consistent with Oct activity (correlation coefficient of 0.92). In human hepatocytes, OCT1 activity was age dependent and also correlated with mRNA levels (correlation coefficient of 0.88). These data show that Oct1/OCT1 activities and expression mature gradually in rat/human liver, thereby mirroring the expression pattern of organic anion transporting polypeptide in rat. These high-resolution transporter ontogeny profiles will allow for more accurate prediction of the pharmacokinetics of OCT1/Oct1 substrates in pediatric populations and juvenile animals.

SIGNIFICANCE STATEMENT

Organic cation transporter-1 (OCT1) represents a major drug uptake transporter in human liver. This study provides high-resolution data regarding the age-dependent function of OCT1 in the liver, based on in vitro experiments with rat and human hepatocytes obtained from donors between birth and adulthood. These ontogeny profiles will inform improved age-specific physiologically based pharmacokinetic models for OCT1 drug substrates in neonates, infants, children, and adults.




hepa

Hepatitis B Prevention: Kolkata Municipal Corporation Screens Pregnant Women

Highlights: Kolkata Municipal Corporation screens pregnant women for hepatitis B to prevent transmission to th




hepa

Delhi Faces Alarming Increase in Hepatitis A Cases

Delhi has experienced a substantial increase in medlinkHepatitis A/medlink cases over the past two months, according to doctors. Hepatitis (!--ref1--)




hepa

Hepatitis C Drug to be Offered Soon in India at Only One Percent of Its Cost in USA

Patent holder and pharma major Gilead, announced voluntary licences with seven generic drug manufacturers in India to s




hepa

Natco Pharma and Hetero Receives Indian Drug Regulatory Approval for Hepatitis-C Drug

Two Hyderabad-based drug companies, Natco Pharma and Hetero have received approval for the sale of Hepatitis- C drug from the Drugs Controller General of India (DCGI).




hepa

Cipla Unveils Generic Version of Oral Hepatitis C Drug in India

Indian drug maker, Cipla has announced that it has released the generic version of Hepatitis C drug, Sofosbuvir in India.The drug will be marketed under