flow rate

Arya's Airtivo Portable Oxygen Concentrator: The Best Choice for Size, Battery Life, Flow Rate, Noise Level, Ease of Use, Cost, and Warranty

If you or a loved one requires oxygen therapy, choosing the right portable oxygen concentrator can be overwhelming. You want a device that's reliable, easy to use, and fits your specific needs, all while being cost-effective. Arya Airtivo is the one!




flow rate

The essentials of pumping, pump speed and flow rate control that engineers MUST know

Around twenty five percent of the energy that is consumed by electric motors worldwide is accounted for by pumping systems, and certain industrial facilities use anywhere from twenty-five to fifty percent of the total electrical energy available. There are significant... Read more

The post The essentials of pumping, pump speed and flow rate control that engineers MUST know appeared first on EEP - Electrical Engineering Portal.




flow rate

Water heater and flow rate control method

A water heater in which by applying pulsation of a liquid to be heated which circulates between a tank and a heat exchanger, scale that has been deposited on the inner wall (heat-transfer surface) of a to-be-heated liquid flow channel in a heat exchanger is detached, and the number of times of circulation of the liquid to be heated which circulates between the tank and the heat exchanger is controlled to be three times or less. The number of times of circulation is determined, based on the entire volume of the to-be-heated liquid stored in the tank, a boiling time to be taken for the entire volume of the to-be-heated liquid in the tank to reach a predetermined temperature, and the flow rate of the to-be-heated liquid which passes through the to-be-heated liquid flow channel.




flow rate

Liquid flow rate control valve

A liquid flow rate control valve is provided in which since a total area of overlapping sections of a communication hole group (38c, 38d) of a distributor (38) and an outlet opening (37a, 37b) of a sleeve (37) changes when the distributor (38) is rotated by a first electric motor (46), if a rotor (42) is rotated by means of a second electric motor (47), an input port (31e) communicates with an output port (31f) through an inlet opening (42c, 42d) of the rotor (42), the communication hole group (38c, 38d) of the distributor (38), and the outlet opening (37a, 37b) of the sleeve (37) when the inlet opening (42c, 42d) of the rotor (42) passes through the overlapping sections, thereby making it possible to carry out PWM control of a flow rate of liquid. Since a thrust load in an axis (L) direction does not act on the distributor (38) and the rotor (42), supporting the distributor (38) and the rotor (42) becomes easy, thereby enabling the cost and weight to be cut.




flow rate

Method and system for adjusting the flow rate of charge material in a charging process of a shaft furnace

In a charging process of a shaft furnace, in particular of a blast furnace, batches of charge material are typically discharged in cyclical sequence into the furnace from a top hopper using a flow control valve. A method and system is proposed for adjusting the flow rate of charge material in such a process. Pre-determined valve characteristics for certain types of material are provided, each indicating the relation between flow rate and valve setting for one type of material. According to the invention, a specific valve characteristic is stored for each batch of charge material, each specific valve characteristic being bijectively associated to one batch and indicating the relation between flow rate and valve setting of the flow control valve specifically for the associated batch. In relation to discharging a given batch of the sequence the invention proposes: using the stored specific valve characteristic associated to the given batch for determining a requested valve setting corresponding to a flow rate setpoint and using the requested valve setting to operate the flow control valve; determining an actual average flow rate for the discharge of the given batch; correcting the stored specific valve characteristic associated to the given batch in case of a stipulated deviation between the flow rate setpoint and the actual average flow rate.




flow rate

Systems and methods for managing pressure and flow rate

A device for controlling fluid flow pressure and flow rate is disclosed. The device includes a first orifice plate, a second orifice plate housed in a tubular structure. The first orifice plate includes a first orifice of a first diameter (d1) and the first orifice is positioned near an edge of the first orifice plate. The second orifice plate includes a second orifice of a second diameter (d2) and the second orifice is positioned near an edge of the second orifice plate. The tubular structure has an effective diameter (D) comprising the first orifice plate and the second orifice plate placed at perpendicular direction to the fluid flow within the tubular structure, separated by an optimum distance (X).




flow rate

SEALPOT AND METHOD FOR CONTROLLING A SOLIDS FLOW RATE THERETHROUGH

A sealpot for a combustion power plant includes a downcomer standpipe which receives solids of the combustion power plant, a bed including a first end and a second opposite end, the first end connected to the downcomer standpipe, a discharge standpipe disposed at the second opposite end of the bed, and an orifice plate disposed between the bed and the discharge standpipe separating the discharge standpipe from the bed. The orifice plate includes apertures disposed at a height above the bed which allow transport of fluidized solids and gas through the orifice plate.




flow rate

Prediction of tunnelling impact on flow rates of adjacent extraction water wells

The decline or drying up of groundwater sources near a tunnel route is damaging to groundwater users. Therefore, forecasting the impact of a tunnel on nearby groundwater sources is a challenging task in tunnel design. In this study, numerical and analytical approaches were applied to the Qomroud water conveyance tunnel (located in Lorestan province, Iran) to assess the impact of tunnelling on the nearby extraction water wells. Using simulation of groundwater-level fluctuation owing to tunnelling, the drawdown at the well locations was determined. From the drawdowns and using Dupuit's equation, the depletion of well flow rates after tunnelling was estimated. To evaluate the results, observed well flow rates before and after tunnelling were compared with the predicted flow rates. The observed and estimated water well flows (before and after tunnelling) showed a regression factor of 0.64, pointing to satisfactory results




flow rate

The effects of decreased flow rate in streams due to the extraction of water for human consumption