dc motor

Why Actuators for Connected Industry Run on Brushless DC Motors

The flow control industry has stubbornly clung to pneumatic actuators, specifically in the American market, for decades.




dc motor

Pulse width modulation DC motor controller

A controller for a DC motor comprises an output switching element configured to couple to the DC motor; an input switching element coupled to the output switching element; a pulse width modulated (PWM) signal coupled to a control terminal of the input switching element and a supply voltage applied to the output switching element. A resistive-capacitive (RC) network may be coupled to a control terminal of the output switching element, with the RC network being configured to integrate the PWM signal into a DC voltage. A first resistive network may be configured to set a bias for the output switching element when the input switching element is turned off, and a second resistive network may be configured to set the bias for the output switching element when the input switching element is turned on, such that the controller is effective to provide zero-to-full supply voltage control to the DC motor.




dc motor

Method and apparatus for applying a commutation advance automatically in a brushless DC motor

To achieve peak acoustic and power performance, the coil or applied current should be in phase or substantially aligned with the back electromotive force (back-EMF) voltage. However, there are generally phase differences between the applied current and back-EMF voltage that are induced by the impedance of the brushless DC motor (which can vary based on conditions, such as temperature and motor speed). Traditionally, compensation for these phase differences was provided manually and on an as-needed basis. Here, however, a system and method are provided that automatically perform a commutation advance by incrementally adjusting a drive signal over successive commutation cycles when the applied current and back-EMF voltage are misaligned.




dc motor

Method and apparatus for processing a motor signal, having current ripple, of a DC motor

In order to process a motor signal (Ia, Um) of a DC motor (4), in particular of an adjustment drive of a motor vehicle, the armature current (Ia) and the motor voltage (Um) of the DC motor (4) are detected and used for determining the back-emf (E) of the DC motor (4), wherein the determined back-emf (E) is used to generate a useful signal (Sf, SEFL), which is in particular speed-proportional, from the armature current signal (Ia) for position sensing or for evaluating an excess force limitation.




dc motor

Voltage regulator for DC motors

A voltage regulator for a pair of electric motors has an input for a signal indicative of the desired speed for the motors and a pulse width modulation control circuit device. A control module provides a conditioning signal to the control circuit to output to the motors a square wave voltage having a duty-cycle which varies according to a predetermined function of the signal applied to the input of the regulator. The control circuit device has first and second electronic solid state switches associated with the motor and controlled by the control module.




dc motor

Method and device for detecting blocking or sluggishness of a DC motor

The invention relates to a method for detecting blocking or sluggishness (M1, M3) of a DC motor (2). The method comprises the following steps: applying a voltage pulse (Uv,t=Os) to the DC motor (2); monitoring a motor current (IMotor) flowing through the DC motor (2); detecting a maximum value of the motor current (IMotor) following the application of the voltage pulse; checking whether a change in the motor current (IMotor) after reaching the maximum value exceeds a specific amount; signalling the blocking or the sluggishness (M1, M3) of the DC motor (2) if the change in the motor current (IMotor) after reaching the maximum value exceeds the specific amount.




dc motor

DC motor assembly with soft starting capability

A DC motor assembly (10) with soft starting capability is provided. The assembly (10) comprises a DC motor (12) including an armature (14) and a field winding (16) adapted to be excited separately from the armature; and circuitry configured to controllably increase current flow through the field winding of the DC motor as a function of time during starting of the DC motor.




dc motor

ROTOR, MANUFACTURING METHOD OF THE ROTOR, AND DC MOTOR

Provided are a rotor, a manufacturing method of the rotor, and a DC motor including the rotor, the rotor including: a core around which a winding is wound, the core being rotatable integrally with a shaft; a commutator being fixed to the shaft and having a terminal to be connected to one end of the winding; and a conduction plate being externally fitted onto the shaft via an insulator part between the terminal of the commutator and the core, the conduction plate having a connection part to be connected to the other end of the winding, wherein an axial direction position of the connection part is set in an intermediate portion that is between a winding projection of the winding and the terminal.





dc motor

AN3453 - Sensored 3-Phase BLDC Motor Control Using Sinusoidal Drive

AN3453 - Sensored 3-Phase BLDC Motor Control Using Sinusoidal Drive