combination therapy

Combination Therapy Holds Promise for Advanced Prostate Cancer Treatment

Decitabine, a medlinkprostate cancer/medlink drug, that inhibits DNA methylation, effectively cuts tumor growth in prostate cancer with neuroendocrine features or loss of the gene RB1.




combination therapy

Combination Therapy Reduces Blood Pressure With Ibrutinib Treatment

Combining two or more blood pressure medications can markedly medlinklower blood pressure/medlink in patients on ibrutinib. (!--ref1--) Targeted




combination therapy

Ferroptosis and ferroptosis-inducing nanomedicine as a promising weapon in combination therapy of prostate cancer

Biomater. Sci., 2024, 12,1617-1629
DOI: 10.1039/D3BM01894F, Review Article
Mengjun Huang, Qiliang Teng, Fei Cao, Jinsheng Huang, Jun Pang
Existing treatments could be sensitized by targeting the ferroptosis pathway in prostate cancer.
The content of this RSS Feed (c) The Royal Society of Chemistry




combination therapy

Methods of treatment using combination therapy

Provided herein are methods of treating a proliferative disease in a subject, comprising administering to the subject a therapeutically effective amount of AC220 and a nucleoside analog, a topoisomerase inhibitor or an anthracycline, or a combination thereof.




combination therapy

Immediate adaptation analysis implicates BCL6 as an EGFR-TKI combination therapy target in NSCLC

Yan Zhou Tran
Mar 31, 2020; 0:RA120.002036v1-mcp.RA120.002036
Research




combination therapy

Immediate adaptation analysis implicates BCL6 as an EGFR-TKI combination therapy target in NSCLC [Research]

Drug resistance is a major obstacle to curative cancer therapies, and increased understanding of the molecular events contributing to resistance would enable better prediction of therapy response, as well as contribute to new targets for combination therapy. Here we have analyzed the early molecular response to epidermal growth factor receptor (EGFR) inhibition using RNA sequencing data covering 13 486 genes and mass spectrometry data covering 10 138 proteins. This analysis revealed a massive response to EGFR inhibition already within the first 24 hours, including significant regulation of hundreds of genes known to control downstream signaling, such as transcription factors, kinases, phosphatases and ubiquitin E3-ligases. Importantly, this response included upregulation of key genes in multiple oncogenic signaling pathways that promote proliferation and survival, such as ERBB3, FGFR2, JAK3 and BCL6, indicating an early adaptive response to EGFR inhibition. Using a library of more than 500 approved and experimental compounds in a combination therapy screen, we could show that several kinase inhibitors with targets including JAK3 and FGFR2 increased the response to EGFR inhibitors. Further, we investigated the functional impact of BCL6 upregulation in response to EGFR inhibition using siRNA-based silencing of BCL6. Proteomics profiling revealed that BCL6 inhibited transcription of multiple target genes including p53, resulting in reduced apoptosis which implicates BCL6 upregulation as a new EGFR inhibitor treatment escape mechanism. Finally, we demonstrate that combined treatment targeting both EGFR and BCL6 act synergistically in killing lung cancer cells. In conclusion, or data indicates that multiple different adaptive mechanisms may act in concert to blunt the cellular impact of EGFR inhibition, and we suggest BCL6 as a potential target for EGFR inhibitor-based combination therapy.




combination therapy

Combination Therapy With Canagliflozin Plus Liraglutide Exerts Additive Effect on Weight Loss, but Not on HbA1c, in Patients With Type 2 Diabetes

OBJECTIVE

To examine the effect of combination therapy with canagliflozin plus liraglutide on HbA1c, endogenous glucose production (EGP), and body weight versus each therapy alone.

RESEARCH DESIGN AND METHODS

Forty-five patients with poorly controlled (HbA1c 7–11%) type 2 diabetes mellitus (T2DM) on metformin with or without sulfonylurea received a 9-h measurement of EGP with [3-3H]glucose infusion, after which they were randomized to receive 1) liraglutide 1.2 mg/day (LIRA); 2) canagliflozin 100 mg/day (CANA); or 3) liraglutide 1.2 mg plus canagliflozin 100 mg (CANA/LIRA) for 16 weeks. At 16 weeks, the EGP measurement was repeated.

RESULTS

The mean decrease from baseline to 16 weeks in HbA1c was –1.67 ± 0.29% (P = 0.0001), –0.89 ± 0.24% (P = 0.002), and –1.44 ± 0.39% (P = 0.004) in patients receiving CANA/LIRA, CANA, and LIRA, respectively. The decrease in body weight was –6.0 ± 0.8 kg (P < 0.0001), –3.5 ± 0.5 kg (P < 0.0001), and –1.9 ± 0.8 kg (P = 0.03), respectively. CANA monotherapy caused a 9% increase in basal rate of EGP (P < 0.05), which was accompanied by a 50% increase (P < 0.05) in plasma glucagon-to-insulin ratio. LIRA monotherapy reduced plasma glucagon concentration and inhibited EGP. In CANA/LIRA-treated patients, EGP increased by 15% (P < 0.05), even though the plasma insulin response was maintained at baseline and the CANA-induced rise in plasma glucagon concentration was blocked.

CONCLUSIONS

These results demonstrate that liraglutide failed to block the increase in EGP caused by canagliflozin despite blocking the rise in plasma glucagon and preventing the decrease in plasma insulin concentration caused by canagliflozin. The failure of liraglutide to prevent the increase in EGP caused by canagliflozin explains the lack of additive effect of these two agents on HbA1c.




combination therapy

Corticosteroid Pulse Combination Therapy for Refractory Kawasaki Disease: A Randomized Trial

The efficacy of intravenous immunoglobulin and corticosteroid pulse combination therapy for refractory Kawasaki disease has been established. The Egami score can be used to predict which patients are likely to have refractory Kawasaki disease.

As a new strategy for primary treatment, intravenous immunoglobulin and corticosteroid pulse combination therapy is safe and effective for patients predicted to have refractory Kawasaki disease based on the Egami score. (Read the full article)




combination therapy

Empiric Combination Therapy for Gram-Negative Bacteremia

Existing data do not demonstrate a need for combination therapy after antimicrobial susceptibility data indicate adequate in vitro activity with β-lactam monotherapy. However, the role of empirical combination therapy for the treatment of Gram-negative bacteremia in children remains unsettled.

We conducted a retrospective, propensity-score matched study demonstrating no improvement in 10-day mortality of children who have Gram-negative bacteremia receiving empirical β-lactam and aminoglycoside combination therapy compared with β-lactam monotherapy, unless the bacteremic episode was attributable to a multidrug-resistant organism. (Read the full article)




combination therapy

Significant efficacy of single low dose primaquine compared to stand alone artemisinin combination therapy in reducing gametocyte carriage in Cambodian patients with uncomplicated multidrug resistant Plasmodium falciparum malaria [Epidemiology and Surveil

Since 2012, single low dose of primaquine (SLDPQ, 0.25mg/kg) has been recommended with artemisinin-based combination therapies, as first-line treatment of acute uncomplicated Plasmodium falciparum malaria, to interrupt its transmission, especially in low transmission settings of multidrug, including artemisinin, resistance. Policy makers in Cambodia have been reluctant to implement this recommendation due to primaquine safety concerns and lack of data on its efficacy.

In this randomized controlled trial, 109 Cambodians with acute uncomplicated P. falciparum malaria received dihydroartemisinin-piperaquine (DP) alone or combined with SLDPQ on the first treatment day. Transmission-blocking efficacy of SLDPQ was evaluated on Days 0, 1, 2, 3, 7, 14, 21, 28 and recrudescence by reverse transcriptase polymerase chain reaction (RT-PCR) (gametocyte prevalence) and membrane-feeding assays with Anopheles minimus mosquitoes (gametocyte infectivity). Without the influence of recrudescent infections, DP+SLDPQ reduced gametocyte carriage 3 fold compared to DP. Of 48 patients tested on Day 0, only three patients were infectious to mosquitoes (~6%). Post-treatment, three patients were infectious: on D14 (3.5%, 1/29), and on the first and seventh day of recrudescence (8.3%, 1/12 for each); this overall low infectivity precluded our ability to assess its transmission blocking efficacy.

Our study confirms effective gametocyte clearance of SLDPQ when combined with DP in multidrug resistant P. falciparum and the negative impact of recrudescent infections due to poor DP efficacy. Artesunate-mefloquine (ASMQ) has replaced DP and ASMQ-SLDPQ has been deployed to treat all P. falciparum symptomatic patients to further support the elimination of multidrug resistant P. falciparum in Cambodia.




combination therapy

Combination Therapy with Ibrexafungerp (formerly SCY-078), a First-in-Class Triterpenoid Inhibitor of (1->3)-{beta}-D-Glucan Synthesis, and Isavuconazole for Treatment of Experimental Invasive Pulmonary Aspergillosis [Experimental Therapeutics]

Ibrexafungerp (formerly SCY-078) is a semisynthetic triterpenoid and potent (1->3)-β-D-glucan synthase inhibitor. We investigated the in vitro activity, pharmacokinetics, and in vivo efficacy of ibrexafungerp (SCY) alone and in combination with anti-mould triazole isavuconazole (ISA) against invasive pulmonary aspergillosis (IPA). The combination of ibrexafungerp and isavuconazole in in vitro studies resulted in an additive and synergistic interactions against Aspergillus spp. Plasma concentration-time curves of ibrexafungerp were compatible with linear dose proportional profile. In vivo efficacy was studied in a well established persistently neutropenic NZW rabbit model of experimental IPA. Treatment groups included untreated rabbits (UC) and rabbits receiving ibrexafungerp at 2.5(SCY2.5) and 7.5(SCY7.5) mg/kg/day, isavuconazole at 40(ISA40) mg/kg/day, or combinations of SCY2.5+ISA40 and SCY7.5+ISA40. The combination of SCY+ISA produced in vitro synergistic interaction. There was significant in vivo reduction of residual fungal burden, lung weights, and pulmonary infarct scores in SCY2.5+ISA40, SCY7.5+ISA40, and ISA40-treatment groups vs that of SCY2.5-treated, SCY7.5-treated and UC (p<0.01). Rabbits treated with SCY2.5+ISA40 and SCY7.5+ISA40 had prolonged survival in comparison to that of SCY2.5-, SCY7.5-, ISA40-treated or UC (p<0.05). Serum GMI and (1->3)-β-D-glucan levels significantly declined in animals treated with the combination of SCY7.5+ISA40 in comparison to those treated with SCY7.5 or ISA40 (p<0.05). Ibrexafungerp and isavuconazole combination demonstrated prolonged survival, decreased pulmonary injury, reduced residual fungal burden, lower GMI and (1->3)-β-D-glucan levels in comparison to those of single therapy for treatment of IPA. These findings provide an experimental foundation for clinical evaluation of the combination of ibrexafungerp and an anti-mould triazole for treatment of IPA.




combination therapy

Combination Therapy Using Benznidazole and Aspirin During the Acute Phase of Experimental Chagas Disease Prevents Cardiovascular Dysfunction and Decreases Typical Cardiac Lesions in the Chronic Phase [Clinical Therapeutics]

Chagas disease, caused by the protozoan Trypanosoma cruzi, is one of the main causes of death due to cardiomyopathy and heart failure in Latin American countries. The treatment of Chagas disease is directed at eliminating the parasite, decreasing the probability of cardiomyopathy, and disrupting the disease transmission cycle. Benznidazole (BZ) and nifurtimox (NFX) are recognized as effective drugs for the treatment of Chagas disease by the World Health Organization, but both have high toxicity and limited efficacy, especially in the chronic disease phase. At low doses, aspirin (ASA) has been reported to protect against T. cruzi infection. We evaluated the effectiveness of BZ in combination with ASA at low doses during the acute disease phase and evaluated cardiovascular aspects and cardiac lesions in the chronic phase. ASA treatment prevented the cardiovascular dysfunction (hypertension and tachycardia) and typical cardiac lesions. Moreover, BZ+ASA-treated mice had a smaller cardiac fibrotic area than that in BZ-treated mice. These results were associated with an increase in the number of eosinophils and reticulocytes and level of nitric oxide in the plasma and cardiac tissue of ASA-treated mice relative to respective controls. These effects of ASA and BZ+ASA in chronically infected mice were inhibited by pretreatment with the LXA4 receptor antagonist, Boc-2, indicating that the protective effects of ASA are mediated by ASA-triggered lipoxin. These results emphasize the importance of exploring new drug combinations for treatments of acute phase of Chagas disease that are beneficial for chronic patients.




combination therapy

Use of Human Induced Pluripotent Stem Cells and Kidney Organoids To Develop a Cysteamine/mTOR Inhibition Combination Therapy for Cystinosis

Background

Mutations in CTNS—a gene encoding the cystine transporter cystinosin—cause the rare, autosomal, recessive, lysosomal-storage disease cystinosis. Research has also implicated cystinosin in modulating the mTORC1 pathway, which serves as a core regulator of cellular metabolism, proliferation, survival, and autophagy. In its severest form, cystinosis is characterized by cystine accumulation, renal proximal tubule dysfunction, and kidney failure. Because treatment with the cystine-depleting drug cysteamine only slows disease progression, there is an urgent need for better treatments.

Methods

To address a lack of good human-based cell culture models for studying cystinosis, we generated the first human induced pluripotent stem cell (iPSC) and kidney organoid models of the disorder. We used a variety of techniques to examine hallmarks of cystinosis—including cystine accumulation, lysosome size, the autophagy pathway, and apoptosis—and performed RNA sequencing on isogenic lines to identify differentially expressed genes in the cystinosis models compared with controls.

Results

Compared with controls, these cystinosis models exhibit elevated cystine levels, increased apoptosis, and defective basal autophagy. Cysteamine treatment ameliorates this phenotype, except for abnormalities in apoptosis and basal autophagy. We found that treatment with everolimus, an inhibitor of the mTOR pathway, reduces the number of large lysosomes, decreases apoptosis, and activates autophagy, but it does not rescue the defect in cystine loading. However, dual treatment of cystinotic iPSCs or kidney organoids with cysteamine and everolimus corrects all of the observed phenotypic abnormalities.

Conclusions

These observations suggest that combination therapy with a cystine-depleting drug such as cysteamine and an mTOR pathway inhibitor such as everolimus has potential to improve treatment of cystinosis.




combination therapy

Targeting PD-1 or PD-L1 in Metastatic Kidney Cancer: Combination Therapy in the First-Line Setting

Recent FDA approvals of regimens targeting programmed death 1 (PD-1) in combination with anti-CTLA-4 or with VEGF tyrosine kinase inhibitors are reshaping front-line therapy for metastatic kidney cancer. In parallel, therapeutics specific for programmed death ligand 1 (PD-L1), one of the two major ligands for PD-1, are under continued investigation. Surprisingly, not all PD-1 and PD-L1 agents lead to similar clinical outcomes, potentially due to biological differences in the cellular expression and regulation of these targets. Here, we review current clinical data on combination immune checkpoint inhibitor therapy in metastatic kidney cancer and discuss the relevant biology of PD-1 and PD-L1. The design of future rational combination therapy trials in metastatic renal cell carcinoma will rely upon an understanding of this biology, along with an evolving understanding of immune cell populations and their functional states in the tumor microenvironment.




combination therapy

Novel Combination Therapy Boosts Response in HER2- Breast Cancer

Combination of the immune checkpoint inhibitor durvalumab (AstraZeneca's Imfinzi), the PARP inhibitor olaparib (AstraZeneca/Merck's Lynparza), along with




combination therapy

Combination Therapy Benefits Pregnant Women With Malaria More

Artemether-lumefantrine (AL) and other artemisinin-based combination therapies (ACTs) were significantly more effective than quinine. The study details




combination therapy

Combination Therapy Found Safe (and) Effective in Prostate Cancer

New therapy combining two targeted treatments helps to maximize efficacy apart from decreasing the incidence of side effects in patients with prostate




combination therapy

[ASAP] Ultrasound-Enhanced Chemo-Photodynamic Combination Therapy by Using Albumin “Nanoglue”-Based Nanotheranostics

ACS Nano
DOI: 10.1021/acsnano.9b09827




combination therapy

Artemisinin-based combination therapy (ACTs) drug resistance trends in Plasmodium falciparum isolates in Southeast Asia