carpathians

Sedimentary and diapiric melanges in the Skrzydlna area (Outer Carpathians of Poland) as indicators of basinal and structural evolution

The Dukla Nappe in the Skrzydlna area exposes two types of mélange reflecting two different phases of basinal and tectonic evolution of the Outer West Carpathian orogen in its Polish sector. The Oligocene-age sedimentary mélange (olistostrome) is related to growth of the accretionary wedge, whereas the Miocene-age diapiric mélange postdates the orogenic thrusting. Textural and structural features of the very coarse-grained sedimentary mélange suggest non-cohesive debris flows and high-density turbidity currents as predominant emplacement mechanisms. Growth strata, associated with progressive unconformities, and facies contrast between the underlying fine-grained unit and the overlying olistostrome reflect a considerable uplift of the source area and rotation of the adjacent part of the basin floor. The olistostrome and the overlying turbidite succession form a retrogressive sequence interpreted as a submarine canyon infill grading to a small submarine fan. The diapiric mélange, injected into the Oligocene-age succession of the Dukla Nappe, contains the Early and Late Cretaceous-age blocks and matrix derived from the underlying Silesian Nappe. The features reflecting diapiric emplacement include matrix proportion increase and block content decrease towards the mélange margins, scaly fabric and shear zones. Both mélanges, interpreted in the past as chaotic bodies, upon detailed examination reveal genesis-related subtle internal organization.




carpathians

Paleomagnetic and magnetic fabric data from Lower Triassic redbeds of the Central Western Carpathians: new constraints on the paleogeographic and tectonic evolution of the Carpathian region

In the Central Western Carpathians (CWC), most published paleomagnetic results from Permo-Mesozoic rocks document extensive remagnetizations and come from thin-skinned thrust units that have undergone multistage deformation. We present results from lower Triassic redbeds from the autochthonous cover overlying the basement that carry a primary magnetization. Petromagnetic results indicate that the dominant ferromagnetic carrier is hematite, while magnetic susceptibility and its anisotropy are controlled by both ferromagnetic and paramagnetic minerals. Magnetic fabrics document weak deformation related to Late Cretaceous shortening. The directions of the high unblocking temperature remanence components pass both reversal and fold tests, attesting to their primary nature. Paleomagnetic inclinations are flatter than expected from reference datasets, suggesting small latitudinal separation between the CWC and stable Europe. Paleomagnetic declinations are mostly clustered within individual mountain massifs, implying their tectonic coherence. They show only minor differences between the massifs, indicating a lack of significant vertical-axis tectonic rotations within the studied central parts of the CWC. The paleomagnetic declinations are therefore representative of the whole of the CWC in terms of regional paleogeographic interpretations, and imply moderate counterclockwise rotations (c. 26°) of the region with respect to stable Europe since the Early Triassic.




carpathians

Microfacies of the Triassic limestones in the Piatra Şoimuliu Klippe (Transylvanian Nappes, Rarau syncline, eastern Carpathians, Romania)




carpathians

The olenekian carbonates of the Bucovinian nappe (the central sector of the Haghimas syncline, Eastern Carpathians). Lithology and microfacies




carpathians

Crevice-type caves as initial forms of rock landslide development in the Flysch Carpathians




carpathians

Genesis, types and evolution of crevice-type caves in the flysch belt of the Western Carpathians (Czech Republic)




carpathians

Gravitationally induced caves and other discontinuities detected by 2D electrical resistivity tomography: Case studies from the Polish Flysch Carpathians