health and food Comparing Highs and Flows in Patients With COPD With Chronic Hypercapnic Respiratory Failure By rc.rcjournal.com Published On :: 2024-10-25T05:44:13-07:00 Full Article
health and food The Challenge of Implementing Race-Neutral PFT Reference Equations By rc.rcjournal.com Published On :: 2024-10-25T05:44:13-07:00 Full Article
health and food Supporting Evidence For Pulmonary Rehabilitation in the Treatment of Long COVID By rc.rcjournal.com Published On :: 2024-10-25T05:44:13-07:00 Full Article
health and food Simulation in Mechanical Ventilation Training: Integrating Best Practices for Effective Education By rc.rcjournal.com Published On :: 2024-10-25T05:44:13-07:00 Full Article
health and food Home Respiratory Strategies in Patients With COPD With Chronic Hypercapnic Respiratory Failure By rc.rcjournal.com Published On :: 2024-10-25T05:44:13-07:00 BACKGROUND:Home noninvasive ventilation (NIV) may improve chronic hypercarbia in COPD and patient-important outcomes. The efficacy of home high-flow nasal cannula (HFNC) as an alternative is unclear.METHODS:We searched MEDLINE, Embase, Cochrane CENTRAL, Scopus, and ClinicalTrials.gov for randomized trials of subjects from inception to March 31, 2023, and updated the search on July 14, 2023. We performed a frequentist network meta-analysis and assessed the certainty of the evidence using the Grading of Recommendations Assessment, Development, and Evaluation approach. We analyzed randomized controlled trials (RCTs) comparing NIV, HFNC, or standard care in adult subjects with COPD with chronic hypercapnic respiratory failure. Outcomes included mortality, COPD exacerbations, hospitalizations, and quality of life (St George Respiratory Questionnaire [SGRQ]).RESULTS:We analyzed 24 RCTs (1,850 subjects). We found that NIV may reduce the risk of death compared to standard care (relative risk 0.82 [95% CI 0.66–1.00]) and probably reduces exacerbations (relative risk 0.71 [95% CI 0.58–0.87]). HFNC probably reduces exacerbations compared to standard care (relative risk 0.77 [0.68–0.88]), but its effect on mortality is uncertain (relative risk 1.20 [95% CI 0.63–2.28]). HFNC probably improves SGRQ scores (mean difference −7.01 [95% CI −12.27 to −1.77]) and may reduce hospitalizations (relative risk 0.87 [0.69–1.09]) compared to standard care. No significant difference was observed between HFNC and NIV in reducing exacerbations.CONCLUSIONS:Both NIV and HFNC reduce exacerbation risks in subjects with COPD compared to standard care. HFNC may offer advantages in improving quality of life. Full Article
health and food Downstream Effects of Market Changes on Inhalers: Impacts on Individuals With Chronic Lung Disease By rc.rcjournal.com Published On :: 2024-10-25T05:44:13-07:00 COPD and asthma are two of the most common chronic lung diseases, affecting over 545 million people globally and 34 million in the United States. Annual health care costs related to chronic lung disease are estimated at €380 billion in the European Union, and $24–$50 billion in the United States averaging to $4,000 in out-of-pocket costs per person in the U.S. A full-text literature search was conducted for English publications between January 1, 2005–March 18, 2024. It returned over 5,000 publications that were further narrowed using key search words, resulting in 172 peer-reviewed articles. Using their experience and subject expertise, the authors further narrowed the peer-reviewed articles to 55 that were in their opinion relevant. Also, 38 recently published industry reports and news articles specific to downstream effects of inhaler market changes and the future impact were included. The literature suggests that individuals with chronic lung disease face increased challenges with access to inhaled medication due to rising medication costs, discontinuation of branded medications, introduction of generic medications not covered by insurance, exclusionary preferred drug list tactics that force health care providers into non-medical switching of medication or devices, and ongoing medication shortages. Providers experience ongoing hurdles in prescribing appropriate inhaled medications for individuals with chronic lung disease, including increased time and costs spent on administrative tasks due to inhaler denials, a loss of patient trust, and limits on their ability to prescribe appropriate inhaled medication for individuals with chronic lung disease. Full Article
health and food Exploring the Impact of Varied Design Approaches and Materials in Respiratory Therapy Education By rc.rcjournal.com Published On :: 2024-10-25T05:44:13-07:00 Full Article
health and food Effects of Lung Injury and Abdominal Insufflation on Respiratory Mechanics and Lung Volume During Time-Controlled Adaptive Ventilation By rc.rcjournal.com Published On :: 2024-10-25T05:44:12-07:00 BACKGROUD:Lung volume measurements are important for monitoring functional aeration and recruitment and may help guide adjustments in ventilator settings. The expiratory phase of airway pressure release ventilation (APRV) may provide physiologic information about lung volume based on the expiratory flow-time slope, angle, and time to approach a no-flow state (expiratory time [TE]). We hypothesized that expiratory flow would correlate with estimated lung volume (ELV) as measured using a modified nitrogen washout/washin technique in a large-animal lung injury model.METHODS:Eight pigs (35.2 ± 1.0 kg) were mechanically ventilated using an Engström Carescape R860 on the APRV mode. All settings were held constant except the expiratory duration, which was adjusted based on the expiratory flow curve. Abdominal pressure was increased to 15 mm Hg in normal and injured lungs to replicate a combination of pulmonary and extrapulmonary lung injury. ELV was estimated using the Carescape FRC INview tool. The expiratory flow-time slope and TE were measured from the expiratory flow profile.RESULTS:Lung elastance increased with induced lung injury from 29.3 ± 7.3 cm H2O/L to 39.9 ± 15.1cm H2O/L, and chest wall elastance increased with increasing intra-abdominal pressures (IAPs) from 15.3 ± 4.1 cm H2O/L to 25.7 ± 10.0 cm H2O/L in the normal lung and 15.8 ± 6.0 cm H2O/L to 33.0 ± 6.2 cm H2O/L in the injured lung (P = .39). ELV decreased from 1.90 ± 0.83 L in the injured lung to 0.67 ± 0.10 L by increasing IAP to 15 mm Hg. This had a significant correlation with a TE decrease from 2.3 ± 0.8 s to 1.0 ± 0.1 s in the injured group with increasing insufflation pressures (ρ = 0.95) and with the expiratory flow-time slope, which increased from 0.29 ± 0.06 L/s2 to 0.63 ± 0.05 L/s2 (ρ = 0.78).CONCLUSIONS:Changes in ELV over time, and the TE and flow-time slope, could be used to demonstrate evolving lung injury during APRV. Using the slope to infer changes in functional lung volume represents a unique, reproducible, real-time, bedside technique that does not interrupt ventilation and may be used for clinical interpretation. Full Article
health and food The Impact of Opioid Prescription on the Occurrence and Outcome of Pneumonia: A Nationwide Cohort Study in South Korea By rc.rcjournal.com Published On :: 2024-10-25T05:44:12-07:00 BACKGROUND:Opioids are known to cause respiratory depression, aspiration, and to suppress the immune system. This study aimed to investigate the relationship between short- and long-term opioid use and the occurrence and clinical outcomes of pneumonia in South Korea.METHODS:The data for this population-based retrospective cohort analysis were obtained from the South Korean National Health Insurance Service. The opioid user group consisted of those prescribed opioids in 2016, while the non-user group, who did not receive opioid prescriptions that year, was selected using a 1:1 stratified random sampling method. The opioid users were categorized into short-term (1–89 d) and long-term (≥90 d) users. The primary end point was pneumonia incidence from January 1, 2017–December 31, 2021, with secondary end points including pneumonia-related hospitalizations and mortality rates during the study period.RESULTS:In total, 4,556,606 adults were enrolled (opioid group, 2,070,039). Opioid users had a 3% higher risk of pneumonia and an 11% higher risk of pneumonia requiring hospitalization compared to non-users. Short-term users had a 3% higher risk of pneumonia, and long-term users had a 4% higher risk compared to non-users (P < .001). Additionally, short-term users had an 8% higher risk of hospital-treated pneumonia, and long-term users had a 17% higher risk compared to non-users (P < .001).CONCLUSIONS:Both short- and long-term opioid prescriptions were associated with higher incidences of pneumonia and hospital-treated pneumonia. In addition, long-term opioid prescriptions were linked to higher mortality rates due to pneumonia. Full Article
health and food Effect of Fasting Prior to Extubation on Prevalence of Empty Stomach in Enterally Fed and Mechanically Ventilated Patients By rc.rcjournal.com Published On :: 2024-10-25T05:44:12-07:00 BACKGROUND:Practice on fasting prior to extubation in critically ill patients is variable. Efficacy of fasting in reducing gastric volume has not been well established. The primary objective of this study was to assess the effect of 4 h of fasting on prevalence of empty stomach using gastric ultrasonography in critically ill subjects who are fasted for extubation. The secondary objectives were to evaluate the change in gastric volumes during 4 h of fasting and to determine factors associated with empty stomach after fasting.METHODS:This was a single-center, prospective, observational study on adult ICU subjects who were enterally fed for at least 6 h continuously and mechanically ventilated. Gastric ultrasound was performed immediately prior to commencement of fasting, after 4 h of fasting, and after nasogastric (NG) aspiration after 4 h of fasting. An empty stomach was defined as a gastric volume ≤ 1.5 mL/kg.RESULTS:Forty subjects were recruited, and 38 (95%) had images suitable for analysis. The prevalence of empty stomach increased after 4 h of fasting (25 [65.8%] vs 31 [81.6%], P = .041) and after 4 h of fasting with NG aspiration (25 [65.8%] vs 34 [89.5%], P = .008). There was a significant difference in median (interquartile range) gastric volume per body weight between before fasting and 4 h after fasting (1.0 [0.5–1.8] mL/kg vs 0.4 [0.2–1.0] mL/kg, P < .001). No patient factors were associated with higher prevalence of empty stomach after 4 h of fasting.CONCLUSIONS:Most mechanically ventilated subjects had empty stomachs prior to fasting for extubation. Fasting for 4 h further increased the prevalence of empty stomach at extubation to > 80%. Full Article
health and food The Impact of Increased PEEP on Hemodynamics, Respiratory Mechanics, and Oxygenation in Pediatric ARDS By rc.rcjournal.com Published On :: 2024-10-25T05:44:12-07:00 BACKGROUND:PEEP is a cornerstone treatment for children with pediatric ARDS. Unfortunately, its titration is often performed solely by evaluating oxygen saturation, which can lead to inadequate PEEP level settings and consequent adverse effects. This study aimed to assess the impact of increasing PEEP on hemodynamics, respiratory system mechanics, and oxygenation in children with ARDS.METHODS:Children receiving mechanical ventilation and on pressure-controlled volume-guaranteed mode were prospectively assessed for inclusion. PEEP was sequentially changed to 5, 12, 10, 8 cm H2O, and again to 5 cm H2O. After 10 min at each PEEP level, hemodynamic, ventilatory, and oxygenation variables were collected.RESULTS:A total of 31 subjects were included, with median age and weight of 6 months and 6.3 kg, respectively. The main reasons for pediatric ICU admission were respiratory failure caused by acute viral bronchiolitis (45%) and community-acquired pneumonia (32%). Most subjects had mild or moderate ARDS (45% and 42%, respectively), with a median (interquartile range) oxygenation index of 8.4 (5.8–12.7). Oxygen saturation improved significantly when PEEP was increased. However, although no significant changes in blood pressure were observed, the median cardiac index at PEEP of 12 cm H2O was significantly lower than that observed at any other PEEP level (P = .001). Fourteen participants (45%) experienced a reduction in cardiac index of > 10% when PEEP was increased to 12 cm H2O. Also, the estimated oxygen delivery was significantly lower, at 12 cm H2O PEEP. Finally, respiratory system compliance significantly reduced when PEEP was increased. At a PEEP of 12 cm H2O, static compliance had a median reduction of 25% in relation to the initial assessment (PEEP of 5 cm H2O).CONCLUSIONS:Although it may improve arterial oxygen saturation, inappropriately high PEEP levels may reduce cardiac output, oxygen delivery, and respiratory system compliance in pediatric subjects with ARDS with low potential for lung recruitability. Full Article
health and food Feasibility of Delivering 5-Day Normobaric Hypoxia Breathing in a Hospital Setting By rc.rcjournal.com Published On :: 2024-10-25T05:44:12-07:00 BACKGROUND:Beneficial effects of breathing at FIO2 < 0.21 on disease outcomes have been reported in previous preclinical and clinical studies. However, the safety and intra-hospital feasibility of breathing hypoxic gas for 5 d have not been established. In this study, we examined the physiologic effects of breathing a gas mixture with FIO2 as low as 0.11 in 5 healthy volunteers.METHODS:All 5 subjects completed the study, spending 5 consecutive days in a hypoxic tent, where the ambient oxygen level was lowered in a stepwise manner over 5 d, from FIO2 of 0.16 on the first day to FIO2 of 0.11 on the fifth day of the study. All the subjects returned to an environment at room air on the sixth day. The subjects' SpO2, heart rate, and breathing frequency were continuously recorded, along with daily blood sampling, neurologic evaluations, transthoracic echocardiography, and mental status assessments.RESULTS:Breathing hypoxia concentration dependently caused profound physiologic changes, including decreased SpO2 and increased heart rate. At FIO2 of 0.14, the mean SpO2 was 92%; at FIO2 of 0.13, the mean SpO2 was 93%; at FIO2 of 0.12, the mean SpO2 was 88%; at FIO2 of 0.11, the mean SpO2 was 85%; and, finally, at an FIO2 of 0.21, the mean SpO2 was 98%. These changes were accompanied by increased erythropoietin levels and reticulocyte counts in blood. All 5 subjects concluded the study with no adverse events. No subjects exhibited signs of mental status changes or pulmonary hypertension.CONCLUSIONS:Results of the current physiologic study suggests that, within a hospital setting, delivering FIO2 as low as 0.11 is feasible and safe in healthy subjects, and provides the foundation for future studies in which therapeutic effects of hypoxia breathing are tested. Full Article
health and food Invasive Mechanical Ventilation and Risk of Hospital-Acquired Venous Thromboembolism By rc.rcjournal.com Published On :: 2024-10-25T05:44:12-07:00 BACKGROUND:This study sought to estimate the overall cumulative incidence and odds of Hospital-acquired venous thromboembolism (VTE) among critically ill children with and without exposure to invasive ventilation. In doing so, we also aimed to describe the temporal relationship between invasive ventilation and hospital-acquired VTE development.METHODS:We performed a retrospective cohort study using Virtual Pediatric Systems (VPS) data from 142 North American pediatric ICUs among children < 18 y of age from January 1, 2016–December 31, 2022. After exclusion criteria were applied, cohorts were identified by presence of invasive ventilation exposure. The primary outcome was cumulative incidence of hospital-acquired VTE, defined as limb/neck deep venous thrombosis or pulmonary embolism. Multivariate logistic regression was used to determine whether invasive ventilation was an independent risk factor for hospital-acquired VTE development.RESULTS:Of 691,118 children studied, 86,922 (12.4%) underwent invasive ventilation. The cumulative incidence of hospital-acquired VTE for those who received invasive ventilation was 1.9% and 0.12% for those who did not (P < .001). The median time to hospital-acquired VTE after endotracheal intubation was 6 (interquartile range 3–14) d. In multivariate models, invasive ventilation exposure and duration were each independently associated with development of hospital-acquired VTE (adjusted odds ratio 1.64 [95% CI 1.42–1.86], P < .001; and adjusted odds ratio 1.03 [95% CI 1.02–1.03], P < .001, respectively).CONCLUSIONS:In this multi-center retrospective review from the VPS registry, invasive ventilation exposure and duration were independent risk factors for hospital-acquired VTE among critically ill children. Children undergoing invasive ventilation represent an important target population for risk-stratified thromboprophylaxis trials. Full Article
health and food Quantitative Computed Tomography and Response to Pronation in COVID-19 ARDS By rc.rcjournal.com Published On :: 2024-10-25T05:44:12-07:00 BACKGROUND:The use of prone position (PP) has been widespread during the COVID-19 pandemic. Whereas it has demonstrated benefits, including improved oxygenation and lung aeration, the factors influencing the response in terms of gas exchange to PP remain unclear. In particular, the association between baseline quantitative computed tomography (CT) scan results and gas exchange response to PP in invasively ventilated subjects with COVID-19 ARDS is unknown. The present study aimed to compare baseline quantitative CT results between subjects responding to PP in terms of oxygenation or CO2 clearance and those who did not.METHODS:This was a single-center, retrospective observational study including critically ill, invasively ventilated subjects with COVID-19–related ARDS admitted to the ICUs of Niguarda Hospital between March 2020–November 2021. Blood gas samples were collected before and after PP. Subjects in whom the PaO2/FIO2 increase was ≥ 20 mm Hg after PP were defined as oxygen responders. CO2 responders were defined when the ventilatory ratio (VR) decreased during PP. Automated quantitative CT analyses were performed to obtain tissue mass and density of the lungs.RESULTS:One hundred twenty-five subjects were enrolled, of which 116 (93%) were O2 responders and 51 (41%) CO2 responders. No difference in quantitative CT characteristics and oxygen were observed between responders and non-responders (tissue mass 1,532 ± 396 g vs 1,654 ± 304 g, P = .28; density −544 ± 109 HU vs −562 ± 58 HU P = .42). Similar findings were observed when dividing the population according to CO2 response (tissue mass 1,551 ± 412 g vs 1,534 ± 377 g, P = .89; density −545 ± 123 HU vs −546 ± 94 HU, P = .99).CONCLUSIONS:Most subjects with COVID-19–related ARDS improved their oxygenation at the first pronation cycle. The study suggests that baseline quantitative CT scan data were not associated with the response to PP in oxygenation or CO2 in mechanically ventilated subjects with COVID-19–related ARDS. Full Article
health and food Perspectives on Using Race in Pulmonary Function Testing: A National Survey of Fellows and Program Directors By rc.rcjournal.com Published On :: 2024-10-25T05:44:12-07:00 BACKGROUND:Pulmonary function tests (PFTs) have historically used race-specific prediction equations. The recent American Thoracic Society guidelines recommend the use of a race-neutral approach in prediction equations. There are limited studies centering the opinions of practicing pulmonologists on the use of race in spirometry. Provider opinion will impact adoption of the new guideline. The aim of this study was to ascertain the beliefs of academic pulmonary and critical care providers regarding the use of race as a variable in spirometry prediction equations.METHODS:We report data from 151 open-ended responses from a voluntary, nationwide survey (distributed by the Association of Pulmonary Critical Care Medicine Program Directors) of academic pulmonary and critical care providers regarding the use of race in PFT prediction equations. Responses were coded using inductive and deductive methods, and a thematic content analysis was conducted.RESULTS:There was a balanced distribution of opinions among respondents supporting, opposing, or being unsure about the incorporation of race in spirometry prediction equations. Responses demonstrated a wide array of understanding related to the concept and definition of race and its relationship to physiology.CONCLUSIONS:There was no consensus among providers regarding the use of race in spirometry prediction equations. Concepts of race having biologic implications persist among pulmonary providers and will likely affect the uptake of the Global Lung Function Initiative per the American Thoracic Society guidelines. Full Article
health and food Rehabilitation Is Associated With Improvements in Post-COVID-19 Sequelae By rc.rcjournal.com Published On :: 2024-10-25T05:44:12-07:00 BACKGROUND:Post–COVID-19 syndrome has affected millions of people, with rehabilitation being at the center of non-pharmacologic care. However, numerous published studies show conflicting results due to, among other factors, considerable variation in subject characteristics. Currently, the effects of age, sex, time of implementation, and prior disease severity on the outcomes of a supervised rehabilitation program after COVID-19 remain unknown.METHODS:This was a non-randomized case-control study. Subjects with post–COVID-19 sequelae were enrolled. Among study participants, those who could attend an 8-week, supervised rehabilitation program composed the intervention group, whereas those who couldn’t the control group. Measurements were collected at baseline and 8 weeks thereafter.RESULTS:Study groups (N = 119) had similar baseline measurements. Participation in rehabilitation (n = 47) was associated with clinically important improvements in the 6-min walk test (6MWT) distance, adjusted (for potential confounders) odds ratio (AOR) 4.56 (95% CI 1.95–10.66); 1-min sit-to-stand test, AOR 4.64 (1.88-11.48); Short Physical Performance Battery, AOR 7.93 (2.82–22.26); health-related quality of life (HRQOL) 5-level EuroQol-5D (Visual Analog Scale), AOR 3.12 (1.37–7.08); Montreal Cognitive Assessment, AOR 6.25 (2.16–18.04); International Physical Activity Questionnaire, AOR 3.63 (1.53–8.59); Fatigue Severity Scale, AOR 4.07 (1.51–10.98); Chalder Fatigue Scale (bimodal score), AOR 3.33 (1.45–7.67); Modified Medical Research Council dyspnea scale (mMRC), AOR 4.43 (1.83–10.74); Post–COVID-19 Functional Scale (PCFS), AOR 3.46 (1.51–7.95); and COPD Assessment Test, AOR 7.40 (2.92–18.75). Time from disease onset was marginally associated only with 6MWT distance, AOR 0.99 (0.99–1.00). Prior hospitalization was associated with clinically important improvements in the mMRC dyspnea scale, AOR 3.50 (1.06–11.51); and PCFS, AOR 3.42 (1.16–10.06). Age, sex, and ICU admission were not associated with the results of any of the aforementioned tests/grading scales.CONCLUSIONS:In this non-randomized, case-control study, post–COVID-19 rehabilitation was associated with improvements in physical function, activity, HRQOL, respiratory symptoms, fatigue, and cognitive impairment. These associations were observed independently of timing of rehabilitation, age, sex, prior hospitalization, and ICU admission. Full Article
health and food Comparison of Web-Based and On-Site Lung Simulators for Education in Mechanical Ventilation By rc.rcjournal.com Published On :: 2024-10-25T05:44:12-07:00 BACKGROUND:Training in mechanical ventilation is a key goal in critical care fellowship education. Web-based simulators offer a cost-effective and readily available alternative to traditional on-site simulators. However, it is unclear how effective they are as teaching tools. In this study, we evaluated the test scores of fellows who underwent mechanical ventilation training by using a web-based simulator compared with fellows who used an on-site simulator during a mechanical ventilation course.METHODS:This was a nonrandomized controlled trial conducted as part of a mechanical ventilation course that involved 70 first-year critical care fellows. The course was identical except for the simulation technology used. One group of instructors used a traditional on-site simulator, the ASL 5000 Lung Solution (n = 39). The second group was instructed in using a web-based simulator, VentSim (n = 31). Each fellow completed a pre-course test and a post-course test by using a validated, case-based ventilator waveform examination that consisted of 5 questions with a total possible score of 100. The primary outcome was a comparison of the mean scores on the posttest between the 2 groups. The study was designed as a non-inferiority trial with a predetermined margin of 10 points.RESULTS:There was no significant difference in the mean ± SD pretest scores between the web-based and the on-site groups (21.1 ± 12.6 and 26.9 ± 13.6 respectively; P = .11). The mean ± SD posttest scores were 45.6 ± 25.0 for the web-based simulator and 43.4 ± 16.5 for on-site simulator (mean difference 2.2; one-sided 95% CI –7.0 to ∞; Pnon-inferiority = .02 [non-inferiority confirmed]). Changes in mean ± SD scores (posttest – pretest) were 25.9 ± 20.9 for the web-based simulator and 16.5 ± 15.9 for the on-site simulator (mean difference 9.4, one-sided 95% CI 0.9 to ∞; Pnon-inferiority < .001 [non-inferiority confirmed]).CONCLUSIONS:In the education of first-year critical care fellows on mechanical ventilation waveform analysis, a web-based mechanical ventilation simulator was non-inferior to a traditional on-site mechanical ventilation simulator. Full Article
health and food Editor’s Commentary By rc.rcjournal.com Published On :: 2024-10-25T05:44:12-07:00 Full Article
health and food A circular split nanoluciferase reporter for validating and screening putative internal ribosomal entry site elements [METHOD] By rnajournal.cshlp.org Published On :: 2024-10-16T07:18:13-07:00 Internal ribosomal entry sites (IRESs) recruit the ribosome to promote translation, typically in an m7G cap-independent manner. Although IRESs are well-documented in viral genomes, they have also been reported in mammalian transcriptomes, where they have been proposed to mediate cap-independent translation of mRNAs. However, subsequent studies have challenged the idea of these "cellular" IRESs. Current methods for screening and discovering IRES activity rely on a bicistronic reporter assay, which is prone to producing false positive signals if the putative IRES sequence has a cryptic promoter or cryptic splicing sites. Here, we report an assay for screening IRES activity using a genetically encoded circular RNA comprising a split nanoluciferase (nLuc) reporter. The circular split nLuc reporter is less susceptible to the various sources of false positives that adversely affect the bicistronic IRES reporter assay and provides a streamlined method for screening IRES activity. Using the circular split nLuc reporter, we find that nine reported cellular IRESs have minimal IRES activity. Overall, the circular split nLuc reporter offers a simplified approach for identifying and validating IRESs and exhibits reduced propensity for producing the types of false positives that can occur with the bicistronic reporter assay. Full Article
health and food High-resolution reconstruction of a C. elegans ribosome sheds light on evolutionary dynamics and tissue specificity [ARTICLE] By rnajournal.cshlp.org Published On :: 2024-10-16T07:18:13-07:00 Caenorhabditis elegans is an important model organism for human health and disease, with foundational contributions to the understanding of gene expression and tissue patterning in animals. An invaluable tool in modern gene expression research is the presence of a high-resolution ribosome structure, though no such structure exists for C. elegans. Here, we present a high-resolution single-particle cryogenic electron microscopy (cryo-EM) reconstruction and molecular model of a C. elegans ribosome, revealing a significantly streamlined animal ribosome. Many facets of ribosome structure are conserved in C. elegans, including overall ribosomal architecture and the mechanism of cycloheximide, whereas other facets, such as expansion segments and eL28, are rapidly evolving. We identify uL5 and uL23 as two instances of tissue-specific ribosomal protein paralog expression conserved in Caenorhabditis, suggesting that C. elegans ribosomes vary across tissues. The C. elegans ribosome structure will provide a basis for future structural, biochemical, and genetic studies of translation in this important animal system. Full Article
health and food Characterization and implementation of the MarathonRT template-switching reaction to expand the capabilities of RNA-seq [ARTICLE] By rnajournal.cshlp.org Published On :: 2024-10-16T07:18:13-07:00 End-to-end RNA-sequencing methods that capture 5'-sequence content without cumbersome library manipulations are of great interest, particularly for analysis of long RNAs. While template-switching methods have been developed for RNA sequencing by distributive short-read RTs, such as the MMLV RTs used in SMART-Seq methods, they have not been adapted to leverage the power of ultraprocessive RTs, such as those derived from group II introns. To facilitate this transition, we dissected the individual processes that guide the enzymatic specificity and efficiency of the multistep template-switching reaction carried out by RTs, in this case, by MarathonRT. Remarkably, this is the first study of its kind, for any RT. First, we characterized the nucleotide specificity of nontemplated addition (NTA) reaction that occurs when the RT extends past the RNA 5'-terminus. We then evaluated the binding specificity of specialized template-switching oligonucleotides, optimizing their sequences and chemical properties to guide efficient template-switching reaction. Having dissected and optimized these individual steps, we then unified them into a procedure for performing RNA sequencing with MarathonRT enzymes, using a well-characterized RNA reference set. The resulting reads span a six-log range in transcript concentration and accurately represent the input RNA identities in both length and composition. We also performed RNA-seq from total human RNA and poly(A)-enriched RNA, with short- and long-read sequencing demonstrating that MarathonRT enhances the discovery of unseen RNA molecules by conventional RT. Altogether, we have generated a new pipeline for rapid, accurate sequencing of complex RNA libraries containing mixtures of long RNA transcripts. Full Article
health and food lncRNA BC200 is processed into a stable Alu monomer [ARTICLE] By rnajournal.cshlp.org Published On :: 2024-10-16T07:18:13-07:00 The noncoding RNA BC200 is elevated in human cancers and is implicated in translation regulation as well as cell survival and proliferation. Upon BC200 overexpression, we observed correlated expression of a second, smaller RNA species. This RNA is expressed endogenously and exhibits cell-type-dependent variability relative to BC200. Aptamer-tagged expression constructs confirmed that the RNA is a truncated form of BC200, and sequencing revealed a modal length of 120 nt; thus, we refer to the RNA fragment as BC120. We present a methodology for accurate and specific detection of BC120 and establish that BC120 is expressed in several normal human tissues and is also elevated in ovarian cancer. BC120 exhibits remarkable stability relative to BC200 and is resistant to knockdown strategies that target the 3' unique sequence of BC200. Combined knockdown of BC200 and BC120 exhibits greater phenotypic impacts than knockdown of BC200 alone, and overexpression of BC120 negatively impacts translation of a GFP reporter, providing insight into a potential translational regulatory role for this RNA. The presence of a novel, truncated, and stable form of BC200 adds complexity to the investigation of this noncoding RNA that must be considered in future studies of BC200 and other related Alu RNAs. Full Article
health and food The small noncoding RNA Vaultrc5 is dispensable to mouse development [ARTICLE] By rnajournal.cshlp.org Published On :: 2024-10-16T07:18:13-07:00 Vault RNAs (vtRNAs) are evolutionarily conserved small noncoding RNAs transcribed by RNA polymerase III. Vault RNAs were initially described as components of the vault particle, but have since been assigned multiple vault-independent functions, including regulation of PKR activity, apoptosis, autophagy, lysosome biogenesis, and viral particle trafficking. The full-length transcript has also been described as a noncanonical source of miRNAs, which are processed in a DICER-dependent manner. As central molecules in vault-dependent and independent processes, vtRNAs have been attributed numerous biological roles, including regulation of cell proliferation and survival, response to viral infections, drug resistance, and animal development. Yet, their impact to mammalian physiology remains largely unexplored. To study vault RNAs in vivo, we generated a mouse line with a conditional Vaultrc5 loss-of-function allele. Because Vaultrc5 is the sole murine vtRNA, this allele enables the characterization of the physiological requirements of this conserved class of small regulatory RNAs in mammals. Using this strain, we show that mice constitutively null for Vaultrc5 are viable and histologically normal but have a slight reduction in platelet counts, pointing to a potential role for vtRNAs in hematopoiesis. This work paves the way for further in vivo characterizations of this abundant but mysterious RNA molecule. Specifically, it enables the study of the biological consequences of constitutive or lineage-specific Vaultrc5 deletion and of the physiological requirements for an intact Vaultrc5 during normal hematopoiesis or in response to cellular stresses such as oncogene expression, viral infection, or drug treatment. Full Article
health and food The antivirulent Staphylococcal sRNA SprC regulates CzrB efflux pump to adapt its response to zinc toxicity [ARTICLE] By rnajournal.cshlp.org Published On :: 2024-10-16T07:18:13-07:00 Bacterial regulatory RNAs (sRNAs) are important players to control gene expression. In Staphylococcus aureus, SprC is an antivirulent trans-acting sRNA known to base-pair with the major autolysin atl mRNA, preventing its translation. Using MS2-affinity purification coupled with RNA sequencing, we looked for its sRNA-RNA interactome and identified 14 novel mRNA targets. In vitro biochemical investigations revealed that SprC binds two of them, czrB and deoD, and uses a single accessible region to regulate its targets, including Atl translation. Unlike Atl regulation, the characterization of the SprC-czrB interaction pinpointed a destabilization of the czrAB cotranscript, leading to a decrease of the mRNA level that impaired CzrB zinc efflux pump expression. On a physiological standpoint, we showed that SprC expression is detrimental to combat against zinc toxicity. In addition, phagocyctosis assays revealed a significant, but moderate, increase of czrB mRNA levels in a sprC-deleted mutant, indicating a functional link between SprC and czrB upon internalization in macrophages, and suggesting a role in resistance to both oxidative and zinc bursts. Altogether, our data uncover a novel pathway in which SprC is implicated, highlighting the multiple strategies used by S. aureus to balance virulence using an RNA regulator. Full Article
health and food Abolished frameshifting for predicted structure-stabilizing SARS-CoV-2 mutants: implications to alternative conformations and their statistical structural analyses [ARTICLE] By rnajournal.cshlp.org Published On :: 2024-10-16T07:18:13-07:00 The SARS-CoV-2 frameshifting element (FSE) has been intensely studied and explored as a therapeutic target for coronavirus diseases, including COVID-19. Besides the intriguing virology, this small RNA is known to adopt many length-dependent conformations, as verified by multiple experimental and computational approaches. However, the role these alternative conformations play in the frameshifting mechanism and how to quantify this structural abundance has been an ongoing challenge. Here, we show by DMS and dual-luciferase functional assays that previously predicted FSE mutants (using the RAG graph theory approach) suppress structural transitions and abolish frameshifting. Furthermore, correlated mutation analysis of DMS data by three programs (DREEM, DRACO, and DANCE-MaP) reveals important differences in their estimation of specific RNA conformations, suggesting caution in the interpretation of such complex conformational landscapes. Overall, the abolished frameshifting in three different mutants confirms that all alternative conformations play a role in the pathways of ribosomal transition. Full Article
health and food DNAJA2 and Hero11 mediate similar conformational extension and aggregation suppression of TDP-43 [REPORT] By rnajournal.cshlp.org Published On :: 2024-10-16T07:18:13-07:00 Many RNA-binding proteins (RBPs) contain low-complexity domains (LCDs) with prion-like compositions. These long intrinsically disordered regions regulate their solubility, contributing to their physiological roles in RNA processing and organization. However, this also makes these RBPs prone to pathological misfolding and aggregation that are characteristic of neurodegenerative diseases. For example, TAR DNA-binding protein 43 (TDP-43) forms pathological aggregates associated with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). While molecular chaperones are well-known suppressors of these aberrant events, we recently reported that highly disordered, hydrophilic, and charged heat-resistant obscure (Hero) proteins may have similar effects. Specifically, Hero proteins can maintain the activity of other proteins from denaturing conditions in vitro, while their overexpression can suppress cellular aggregation and toxicity associated with aggregation-prone proteins. However, it is unclear how these protective effects are achieved. Here, we used single-molecule FRET to monitor the conformations of the aggregation-prone prion-like LCD of TDP-43. While we observed high conformational heterogeneity in wild-type LCD, the ALS-associated mutation A315T promoted collapsed conformations. In contrast, an Hsp40 chaperone, DNAJA2, and a Hero protein, Hero11, stabilized extended states of the LCD, consistent with their ability to suppress the aggregation of TDP-43. Our results link single-molecule effects on conformation to macro effects on bulk aggregation, where a Hero protein, like a chaperone, can maintain the conformational integrity of a client protein to prevent its aggregation. Full Article
health and food Improved functions for nonlinear sequence comparison using SEEKR [ARTICLE] By rnajournal.cshlp.org Published On :: 2024-10-16T07:18:13-07:00 SEquence Evaluation through k-mer Representation (SEEKR) is a method of sequence comparison that uses sequence substrings called k-mers to quantify the nonlinear similarity between nucleic acid species. We describe the development of new functions within SEEKR that enable end-users to estimate P-values that ascribe statistical significance to SEEKR-derived similarities, as well as visualize different aspects of k-mer similarity. We apply the new functions to identify chromatin-enriched lncRNAs that contain XIST-like sequence features, and we demonstrate the utility of applying SEEKR on lncRNA fragments to identify potential RNA-protein interaction domains. We also highlight ways in which SEEKR can be applied to augment studies of lncRNA conservation, and we outline the best practice of visualizing RNA-seq read density to evaluate support for lncRNA annotations before their in-depth study in cell types of interest. Full Article
health and food Branch site recognition by the spliceosome [REVIEW] By rnajournal.cshlp.org Published On :: 2024-10-16T07:18:13-07:00 The spliceosome is a eukaryotic multimegadalton RNA–protein complex that removes introns from transcripts. The spliceosome ensures the selection of each exon-intron boundary through multiple recognition events. Initially, the 5' splice site (5' SS) and branch site (BS) are bound by the U1 small nuclear ribonucleoprotein (snRNP) and the U2 snRNP, respectively, while the 3' SS is mostly determined by proximity to the branch site. A large number of splicing factors recognize the splice sites and recruit the snRNPs before the stable binding of the snRNPs occurs by base-pairing the snRNA to the transcript. Fidelity of this process is crucial, as mutations in splicing factors and U2 snRNP components are associated with many diseases. In recent years, major advances have been made in understanding how splice sites are selected in Saccharomyces cerevisiae and humans. Here, I review and discuss the current understanding of the recognition of splice sites by the spliceosome with a focus on recognition and binding of the branch site by the U2 snRNP in humans. Full Article
health and food Characterization and Prediction of Organic Anion Transporting Polypeptide 1B Activity in Prostate Cancer Patients on Abiraterone Acetate Using Endogenous Biomarker Coproporphyrin I [Articles] By dmd.aspetjournals.org Published On :: 2024-10-16T09:02:03-07:00 Organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 are important hepatic transporters. We previously identified OATP1B3 being critically implicated in the disposition of abiraterone. We aimed to further investigate the effects of abiraterone on the activities of OATP1B1 and OATP1B3 utilizing a validated endogenous biomarker coproporphyrin I (CP-I). We used OATP1B-transfected cells to characterize the inhibitory potential of abiraterone against OATP1B-mediated uptake of CP-I. Inhibition constant (Ki) was incorporated into our physiologically based pharmacokinetic (PBPK) modeling to simulate the systemic exposures of CP-I among cancer populations receiving either our model-informed 500 mg or clinically approved 1000 mg abiraterone acetate (AA) dosage. Simulated data were compared with clinical CP-I concentrations determined among our nine metastatic prostate cancer patients receiving 500 mg AA treatment. Abiraterone inhibited OATP1B3-mediated, but not OATP1B1-mediated, uptake of CP-I in vitro, with an estimated Ki of 3.93 μM. Baseline CP-I concentrations were simulated to be 0.81 ± 0.26 ng/ml and determined to be 0.72 ± 0.16 ng/ml among metastatic prostate cancer patients, both of which were higher than those observed for healthy subjects. PBPK simulations revealed an absence of OATP1B3-mediated interaction between abiraterone and CP-I. Our clinical observations confirmed that CP-I concentrations remained comparable to baseline levels up to 12 weeks post 500 mg AA treatment. Using CP-I as an endogenous biomarker, we identified the inhibition of abiraterone on OATP1B3 but not OATP1B1 in vitro, which was predicted and observed to be clinically insignificant. We concluded that the interaction risk between AA and substrates of OATP1Bs is low. SIGNIFICANCE STATEMENT The authors used the endogenous biomarker coproporphyrin I (CP-I) and identified abiraterone as a moderate inhibitor of organic anion transporting polypeptide (OATP) 1B3 in vitro. Subsequent physiologically based pharmacokinetic (PBPK) simulations and clinical observations suggested an absence of OATP1B-mediated interaction between abiraterone and CP-I among prostate cancer patients. This multipronged study concluded that the interaction risk between abiraterone acetate and substrates of OATP1Bs is low, demonstrating the application of PBPK-CP-I modeling in predicting OATP1B-mediated interaction implicating abiraterone. Full Article
health and food Correlations of Long Noncoding RNA HNF4A-AS1 Alternative Transcripts with Liver Diseases and Drug Metabolism [Articles] By dmd.aspetjournals.org Published On :: 2024-10-16T09:02:03-07:00 Hepatocyte nuclear factor 4 alpha antisense 1 (HNF4A-AS1) is a long noncoding RNA (lncRNA) gene physically located next to the transcription factor HNF4A gene in the human genome. Its transcription products have been reported to inhibit the progression of hepatocellular carcinoma (HCC) and negatively regulate the expression of cytochrome P450s (CYPs), including CYP1A2, 2B6, 2C9, 2C19, 2E1, and 3A4. By altering CYP expression, lncRNA HNF4A-AS1 also contributes to the susceptibility of drug-induced liver injury. Thus, HNF4A-AS1 lncRNA is a promising target for controlling HCC and modulating drug metabolism. However, HNF4A-AS1 has four annotated alternative transcripts in the human genome browsers, and it is unclear which transcripts the small interfering RNAs or small hairpin RNAs used in the previous studies are silenced and which transcripts should be used as the target. In this study, four annotated and two newly identified transcripts were confirmed. These six transcripts showed different expression levels in different liver disease conditions, including metabolic dysfunction-associated steatotic liver disease, alcohol-associated liver disease, and obesity. The expression patterns of all HNF4A-AS1 transcripts were further investigated in liver cell growth from human embryonic stem cells to matured hepatocyte-like cells, HepaRG differentiation, and exposure to rifampicin treatment. Several HNF4A-AS1 transcripts highly displayed correlations with these situations. In addition, some of the HNF4A-AS1 transcripts also showed a strong correlation with CYP3A4 during HepaRG maturation and rifampicin exposure. Our findings provide valuable insights into the specific roles of HNF4A-AS1 transcripts, paving the way for more targeted therapeutic strategies for liver diseases and drug metabolism. SIGNIFICANCE STATEMENT This study explores the alternative transcripts of HNF4A-AS1, showing how their expression changes in different biological conditions, from various liver diseases to the growth and differentiation of hepatocytes and drug metabolism. The generated knowledge is essential for understanding the independent roles of different transcripts from the same lncRNA in different liver diseases and drug metabolism situations. Full Article
health and food Functional Characterization of Reduced Folate Carrier and Protein-Coupled Folate Transporter for Antifolates Accumulation in Non-Small Cell Lung Cancer Cells [Articles] By dmd.aspetjournals.org Published On :: 2024-10-16T09:02:03-07:00 Antifolates are important for chemotherapy in non–small cell lung cancer (NSCLC). They mainly rely on reduced folate carrier (RFC) and proton-coupled folate transporter (PCFT) to enter cells. PCFT is supposed to be the dominant transporter of the two in tumors, as it operates optimally at acidic pH and has limited transport activity at physiological pH, whereas RFC operates optimally at neutral pH. In this study, we found RFC showed a slightly pH-dependent uptake of antifolates, with similar affinity values at pH 7.4 and 6.5. PCFT showed a highly pH-dependent uptake of antifolates, with an optimum pH of 6.0 for pemetrexed and 5.5 for methotrexate. The Michaelis-Menten constant (Km) value of PCFT for pemetrexed at pH 7.4 was more than 10 times higher than that at pH 6.5. Interestingly, we found that antifolate accumulations mediated by PCFT at acidic pH were significantly affected by the efflux transporter, breast cancer resistance protein (BCRP). The highest pemetrexed concentration was observed at pH 7.0–7.4 after a 60-minute accumulation in PCFT-expressing cells, which was further evidenced by the cytotoxicity of pemetrexed, with the IC50 value of pemetrexed at pH 7.4 being one-third of that at pH 6.5. In addition, the in vivo study indicated that increasing PCFT and RFC expression significantly enhanced the antitumor efficacy of pemetrexed despite the high expression of BCRP. These results suggest that both RFC and PCFT are important for antifolates accumulation in NSCLC, although there is an acidic microenvironment and high BCRP expression in tumors. SIGNIFICANCE STATEMENT Evaluating the role of reduced folate carrier (RFC) and proton-coupled folate transporter (PCFT) on antifolates accumulation in non–small cell lung cancer (NSCLC) is necessary for new drug designs. By using cell models, we found both RFC and PCFT were important for antifolates accumulation in NSCLC. Breast cancer resistance protein (BCRP) significantly affected PCFT-mediated antifolates accumulation at acidic pH but not RFC-mediated pemetrexed accumulation at physiological pH. High expression of PCFT or RFC enhanced the cytotoxicity and antitumor effect of pemetrexed. Full Article
health and food Molecular Mechanisms for the Selective Transport of Dichlorofluorescein by Human Organic Anion Transporting Polypeptide 1B1 [Articles] By dmd.aspetjournals.org Published On :: 2024-10-16T09:02:03-07:00 Human organic anion transporting polypeptide (OATP) 1B1 and 1B3 are two highly homologous liver-specific uptake transporters. However, 2’,7’-dichlorofluorescein (DCF) is preferably transported by OATP1B1. In the present study, the molecular mechanisms for the selective transport of DCF by OATP1B1 were investigated by constructing and characterizing an array of OATP1B1/1B3 chimeras and site-directed mutagenesis. Our results show that transmembrane domain (TM) 10 is crucial for the surface expression and function of OATP1B1, in which Q541 and L545 play the most important roles in DCF transport. Replacement of TM10 in OATP1B1 with its OATP1B3 counterpart led to OATP1B1’s complete intracellular retention. Q541 and L545 may interact with DCF directly via hydrogen bonding and hydrophobic interactions. The decrease of DCF uptake by Q541A and L545S was due to their reduced binding affinity for DCF as compared with OATP1B1. In addition, Q541 and L545 are also crucial for the transport of estradiol-17β-glucuronide (E17βG) but not for the transport of estrone-3-sulfate (E3S), indicating different interaction modes between DCF/E17βG and E3S in OATP1B1. Taken together, Q541 and L545 in TM10 are critical for OATP1B1-mediated DCF uptake, but their effect is substrate-dependent. SIGNIFICANCE STATEMENT The key TMs and amino acid residues for the selective transport of DCF by OATP1B1 were identified. TM10 is crucial for the surface expression and function of OATP1B1. Within TM10, Q541 and L545 played the most significant roles and affected the function of OATP1B1 in a substrate-dependent manner. This information is crucial for a better understanding of the mechanism of the multispecificity of OATP1B1 and as a consequence the mechanism of OATP1B1-mediated drug–drug interactions. Full Article
health and food Investigations into the Concentrations and Metabolite Profiles of Doping Agents and Antidepressants in Human Seminal Fluid Using Liquid Chromatography-Mass Spectrometry [Articles] By dmd.aspetjournals.org Published On :: 2024-10-16T09:02:03-07:00 Exogenous substances, including drugs and chemicals, can transfer into human seminal fluid and influence male fertility and reproduction. In addition, substances relevant in the context of sports drug testing programs, can be transferred into the urine of a female athlete (after unprotected sexual intercourse) and trigger a so-called adverse analytical finding. Here, the question arises as to whether it is possible to distinguish analytically between intentional doping offenses and unintentional contamination of urine by seminal fluid. To this end, 480 seminal fluids from nonathletes were analyzed to identify concentration ranges and metabolite profiles of therapeutic drugs that are also classified as doping agents. Therefore, a screening procedure was developed using liquid chromatography connected to a triple quadrupole mass spectrometer, and suspect samples (i.e., samples indicating the presence of relevant compounds) were further subjected to liquid chromatography-high-resolution accurate mass (tandem) mass spectrometry. The screening method yielded 90 findings (including aromatase inhibitors, selective estrogen receptor modulators, diuretics, stimulants, glucocorticoids, beta-blockers, antidepressants, and the nonapproved proliferator-activated receptor delta agonist GW1516) in a total of 81 samples, with 91% of these suspected cases being verified by the confirmation method. In addition to the intact drug, phase-I and -II metabolites were also occasionally observed in the seminal fluid. This study demonstrated that various drugs including those categorized as doping agents partition into seminal fluid. Monitoring substances and metabolites may contribute to a better understanding of the distribution and metabolism of exogenous substances in seminal fluid that may be responsible for the impairment of male fertility. SIGNIFICANCE STATEMENT This study demonstrates that doping agents as well as clinically relevant substances are transferred/eliminated into seminal fluid to a substantial extent and that knowledge about drug levels (and potential consequences for the male fertility and female exposure) is limited. The herein generated new dataset provides new insights into an important and yet little explored area of drug deposition and elimination, and hereby a basis for the assessment of contamination cases by seminal fluid in sports drug testing. Full Article
health and food Effects of Compound Probiotics on Pharmacokinetics of Cytochrome 450 Probe Drugs in Rats [Articles] By dmd.aspetjournals.org Published On :: 2024-10-16T09:02:03-07:00 Compound probiotics have been widely used and commonly coadministered with other drugs for treating various chronic illnesses, yet their effects on drug pharmacokinetics remain underexplored. This study elucidated the impact of VSL#3 on the metabolism of probe drugs for cytochrome P450 enzymes (P450s), specifically omeprazole, tolbutamide, midazolam, metoprolol, phenacetin, and chlorzoxazone. Male Wistar rats were administered drinking water containing VSL#3 or not for 14 days and then intragastrically administered a P450 probe cocktail; this was done to investigate the host P450’s metabolic phenotype. Stool, liver/jejunum, and serum samples were collected for 16S ribosomal RNA sequencing, RNA sequencing, and bile acid profiling. The results indicated significant differences in both α and β diversity of intestinal microbial composition between the probiotic and vehicle groups in rats. In the probiotic group, the bioavailability of omeprazole increased by 269.9%, whereas those of tolbutamide and chlorpropamide decreased by 28.1% and 27.4%, respectively. The liver and jejunum exhibited 1417 and 4004 differentially expressed genes, respectively, between the two groups. In the probiotic group, most of P450 genes were upregulated in the liver but downregulated in the jejunum. The expression of genes encoding metabolic enzymes and drug transporters also changed. The serum-conjugated bile acids in the probiotic group were significantly reduced. Shorter duodenal villi and longer ileal villi were found in the probiotic group. In summary, VSL#3 administration altered the gut microbiota, host drug–processing gene expression, and intestinal structure in rats, which could be reasons for pharmacokinetic changes. SIGNIFICANCE STATEMENT This study focused on the effects of the probiotic VSL#3 on the pharmacokinetic profile of cytochrome P450 probe drugs and the expression of host drug metabolism genes. Compared with previous studies, the present study provides a comprehensive explanation for the host drug metabolism profile modified by probiotics, combined here with the bile acid profile and histopathological analysis. Full Article
health and food The Simultaneous Inhibition of Solute Carrier Family 6 Member 19 and Breast Cancer Resistance Protein Transporters Leads to an Increase of Indoxyl Sulfate (a Uremic Toxin) in Plasma and Kidney [Articles] By dmd.aspetjournals.org Published On :: 2024-10-16T09:02:03-07:00 Solute carrier family 6 member 19 (SLC6A19) inhibitors are being studied as therapeutic agents for phenylketonuria. In this work, a potent SLC6A19 inhibitor (RA836) elevated rat kidney uremic toxin indoxyl sulfate (IDS) levels by intensity (arbitrary unit) of 13.7 ± 7.7 compared with vehicle 0.3 ± 0.1 (P = 0.01) as determined by tissue mass spectrometry imaging analysis. We hypothesized that increased plasma and kidney levels of IDS could be caused by the simultaneous inhibition of both Slc6a19 and a kidney IDS transporter responsible for excretion of IDS into urine. To test this, we first confirmed the formation of IDS through tryptophan metabolism by feeding rats a Trp-free diet. Inhibiting Slc6a19 with RA836 led to increased IDS in these rats. Next, RA836 and its key metabolites were evaluated in vitro for inhibiting kidney transporters such as organic anion transporter (OAT)1, OAT3, and breast cancer resistance protein (BCRP). RA836 inhibits BCRP with an IC50 of 0.045 μM but shows no significant inhibition of OAT1 or OAT3. Finally, RA836 analogs with either potent or no inhibition of SLC6A19 and/or BCRP were synthesized and administered to rats fed a normal diet. Plasma and kidney samples were collected to quantify IDS using liquid chromatography–mass spectrometry. Neither a SLC6A19 inactive but potent BCRP inhibitor nor a SLC6A19 active but weak BCRP inhibitor raised IDS levels, whereas compounds inhibiting both transporters caused IDS accumulation in rat plasma and kidney, supporting the hypothesis that rat Bcrp contributes to the excretion of IDS. In summary, we identified that inhibiting Slc6a19 increases IDS formation, while simultaneously inhibiting Bcrp results in IDS accumulation in the kidney and plasma. SIGNIFICANCE STATEMENT This is the first publication to decipher the mechanism for accumulation of indoxyl sulfate (IDS) (a uremic toxin) in rats via inhibition of both Slc6a19 and Bcrp. Specifically, inhibition of Slc6a19 in the gastrointestinal track increases IDS formation, and inhibition of Bcrp in the kidney blocks IDS excretion. Therefore, we should avoid inhibiting both solute carrier family 6 member 19 and breast cancer resistance protein simultaneously in humans to prevent accumulation of IDS, a known risk factor for cardiovascular disease, psychic anxiety, and mortality in chronic kidney disease patients. Full Article
health and food Quantitatively Predicting Effects of Exercise on Pharmacokinetics of Drugs Using a Physiologically Based Pharmacokinetic Model [Articles] By dmd.aspetjournals.org Published On :: 2024-10-16T09:02:03-07:00 Exercise significantly alters human physiological functions, such as increasing cardiac output and muscle blood flow and decreasing glomerular filtration rate (GFR) and liver blood flow, thereby altering the absorption, distribution, metabolism, and excretion of drugs. In this study, we aimed to establish a database of human physiological parameters during exercise and to construct equations for the relationship between changes in each physiological parameter and exercise intensity, including cardiac output, organ blood flow (e.g., muscle blood flow and kidney blood flow), oxygen uptake, plasma pH and GFR, etc. The polynomial equation P = aiHRi was used for illustrating the relationship between the physiological parameters (P) and heart rate (HR), which served as an index of exercise intensity. The pharmacokinetics of midazolam, quinidine, digoxin, and lidocaine during exercise were predicted by a whole-body physiologically based pharmacokinetic (WB-PBPK) model and the developed database of physiological parameters following administration to 100 virtual subjects. The WB-PBPK model simulation results showed that most of the observed plasma drug concentrations fell within the 5th–95th percentiles of the simulations, and the estimated peak concentrations (Cmax) and area under the curve (AUC) of drugs were also within 0.5–2.0 folds of observations. Sensitivity analysis showed that exercise intensity, exercise duration, medication time, and alterations in physiological parameters significantly affected drug pharmacokinetics and the net effect depending on drug characteristics and exercise conditions. In conclusion, the pharmacokinetics of drugs during exercise could be quantitatively predicted using the developed WB-PBPK model and database of physiological parameters. SIGNIFICANCE STATEMENT This study simulated real-time changes of human physiological parameters during exercise in the WB-PBPK model and comprehensively investigated pharmacokinetic changes during exercise following oral and intravenous administration. Furthermore, the factors affecting pharmacokinetics during exercise were also revealed. Full Article
health and food Nonclinical Pharmacokinetics Study of OLX702A-075-16, N-Acetylgalactosamine Conjugated Asymmetric Small Interfering RNA (GalNAc-asiRNA) [Articles] By dmd.aspetjournals.org Published On :: 2024-10-16T09:02:03-07:00 In this study, the nonclinical pharmacokinetics of OLX702A-075-16, an RNA interference therapeutic currently in development, were investigated. OLX702A-075-16 is a novel N-acetylgalactosamine conjugated asymmetric small-interfering RNA (GalNAc-asiRNA) used for the treatment of an undisclosed liver disease. Its unique 16/21-mer asymmetric structure reduces nonspecific off-target effects without compromising efficacy. We investigated the plasma concentration, tissue distribution, metabolism, and renal excretion of OLX702A-075-16 following a subcutaneous administration in mice and rats. For bioanalysis, high-performance liquid chromatography with fluorescence detection was used. The results showed rapid clearance from plasma (0.5 to 1.5 hours of half-life) and predominant distribution to the liver and/or kidney. Less than 1% of the liver concentration of OLX702A-075-16 was detected in the other tissues. Metabolite profiling using liquid chromatography coupled with high-resolution mass spectrometry revealed that the intact duplex OLX702A-075-16 was the major compound in plasma. The GalNAc moiety was predominantly metabolized from the sense strand in the liver, with the unconjugated sense strand of OLX702A-075-16 accounting for more than 95% of the total exposure in the rat liver. Meanwhile, the antisense strand was metabolized by the sequential loss of nucleotides from the 3'-terminus by exonuclease, with the rat liver samples yielding the most diverse truncated forms of metabolites. Urinary excretion over 96 hours was less than 1% of the administered dose in rats. High plasma protein binding of OLX702A-075-16 likely inhibited its clearance through renal filtration. SIGNIFICANCE STATEMENT This study presents the first comprehensive characterization of the in vivo pharmacokinetics of GalNAc-asiRNA. The pharmacokinetic insights gained from this research will aid in understanding toxicology and efficacy, optimizing delivery platforms, and improving the predictive power of preclinical species data for human applications. Full Article
health and food Ontogeny of Hepatic Organic Cation Transporter-1 in Rat and Human [Articles] By dmd.aspetjournals.org Published On :: 2024-10-16T09:02:03-07:00 The organic cation transporter (OCT)-1 mediates hepatic uptake of cationic endogenous compounds and xenobiotics. To date, limited information exists on how Oct1/OCT1 functionally develops with age in rat and human livers and how this would affect the pharmacokinetics of OCT substrates in children or juvenile animals. The functional ontogeny of rOct/hOCT was profiled in suspended rat (2–57 days old) and human hepatocytes (pediatric liver tissue donors: age 2–12 months) by determining uptake clearance of 4-[4-(dimethylamino)styryl]-N-methylpyridinium iodide (ASP+) as a known rOct/hOCT probe substrate. mRNA expression was determined in rat liver tissue corresponding to rat ages used in the functional studies, while hOCT1 mRNA expressions were determined in the same hepatocyte batches as those used for uptake studies. Maturation of rOct/hOCT activity and expression were evaluated by comparing values obtained at the various ages to the adult values. Relative to adult values (at 8 weeks), ASP+ uptake clearance in suspended rat hepatocytes aged 0, 1, 2, 3, 4, 5, and 6 weeks reached 26%, 29%, 33%, 37%, 72%, 63%, and 71%, respectively. Hepatic Oct1 mRNA expression was consistent with Oct activity (correlation coefficient of 0.92). In human hepatocytes, OCT1 activity was age dependent and also correlated with mRNA levels (correlation coefficient of 0.88). These data show that Oct1/OCT1 activities and expression mature gradually in rat/human liver, thereby mirroring the expression pattern of organic anion transporting polypeptide in rat. These high-resolution transporter ontogeny profiles will allow for more accurate prediction of the pharmacokinetics of OCT1/Oct1 substrates in pediatric populations and juvenile animals. SIGNIFICANCE STATEMENT Organic cation transporter-1 (OCT1) represents a major drug uptake transporter in human liver. This study provides high-resolution data regarding the age-dependent function of OCT1 in the liver, based on in vitro experiments with rat and human hepatocytes obtained from donors between birth and adulthood. These ontogeny profiles will inform improved age-specific physiologically based pharmacokinetic models for OCT1 drug substrates in neonates, infants, children, and adults. Full Article
health and food The Induction of Drug Uptake Transporter Organic Anion Transporting Polypeptide 1A2 by Radiation Is Mediated by the Nonreceptor Tyrosine Kinase v-YES-1 Yamaguchi Sarcoma Viral Oncogene Homolog 1 [Articles] By dmd.aspetjournals.org Published On :: 2024-10-16T09:02:03-07:00 Organic anion transporting polypeptides (OATP, gene symbol SLCO) are well-recognized key determinants for the absorption, distribution, and excretion of a wide spectrum of endogenous and exogenous compounds including many antineoplastic agents. It was therefore proposed as a potential drug target for cancer therapy. In our previous study, it was found that low-dose X-ray and carbon ion irradiation both upregulated the expression of OATP family member OATP1A2 and in turn, led to a more dramatic killing effect when cancer cells were cotreated with antitumor drugs such as methotrexate. In the present study, the underlying mechanism of the phenomenon was explored in breast cancer cell line MCF-7. It was found that the nonreceptor tyrosine kinase v-YES-1 Yamaguchi sarcoma viral oncogene homolog 1 (YES-1) was temporally coordinated with the change of OATP1A2 after irradiation. The overexpression of YES-1 significantly increased OATP1A2 both at the mRNA and protein level. The signal transducer and activator of transcription 3 (STAT3) pathway is likely the downstream target of YES-1 because phosphorylation and nuclear accumulation of STAT3 were both enhanced after overexpressing YES-1 in MCF-7 cells. Further investigation revealed that there are two possible binding sites of STAT3 localized at the upstream sequence of SLCO1A2, the encoding gene of OATP1A2. Electrophoretic mobility shift assay and chromatin immunoprecipitation analysis suggested that these two sites bound to STAT3 specifically and the overexpression of YES-1 significantly increased the association of the transcription factor with the putative binding sites. Finally, inhibition or knockdown of YES-1 attenuated the induction effect of radiation on the expression of OATP1A2. SIGNIFICANCE STATEMENT The present study found that the effect of X-rays on v-YES-1 Yamaguchi sarcoma viral oncogene homolog 1 (YES-1) and organic anion transporting polypeptides (OATP)1A2 was temporally coordinated. YES-1 phosphorylates and increases the nuclear accumulation of signal transducer and activator of transcription 3, which in turn binds to the upstream regulatory sequences of SLCO1A2, the coding gene for OATP1A2. Hence, inhibitors of YES-1 may suppress the radiation induction effect on OATP1A2. Full Article
health and food CYP8B1 Catalyzes 12alpha-Hydroxylation of C27 Bile Acid: In Vitro Conversion of Dihydroxycoprostanic Acid into Trihydroxycoprostanic Acid [Articles] By dmd.aspetjournals.org Published On :: 2024-10-16T09:02:03-07:00 Sterol 12α-hydroxylase (CYP8B1) is the unique P450 enzyme with sterol 12-oxidation activity, playing an exclusive role in 12α-hydroxylating intermediates along the bile acid (BA) synthesis pathway. Despite the long history of BA metabolism studies, it is unclear whether CYP8B1 catalyzes 12α-hydroxylation of C27 BAs, the key intermediates shuttling between mitochondria and peroxisomes. This work provides robust in vitro evidence that both microsomal and recombinant CYP8B1 enzymes catalyze the 12α-hydroxylation of dihydroxycoprostanic acid (DHCA) into trihydroxycoprostanic acid (THCA). On the one hand, DHCA 12α-hydroxylation reactivity is conservatively detected in liver microsomes of both human and preclinical animals. The reactivity of human tissue fractions conforms well with the selectivity of CYP8B1 mRNA expression, while the contribution of P450 enzymes other than CYP8B1 is excluded by reaction phenotyping in commercial recombinant enzymes. On the other hand, we prepared functional recombinant human CYP8B1 proteins according to a recently published protocol. Titration of the purified CYP8B1 proteins with either C4 (7α-hydroxy-4-cholesten-3-one) or DHCA yields expected blue shifts of the heme Soret peak (type I binding). The recombinant CYP8B1 proteins efficiently catalyze 12α-hydroxylation of both DHCA and C4, with substrate concentration occupying half of the binding sites of 3.0 and 1.9 μM and kcat of 3.2 and 2.6 minutes–1, respectively. In summary, the confirmed role of CYP8B1 in 12α-hydroxylation of C27 BAs has furnished the forgotten passageway in the BA synthesis pathway. The present finding might have opened a new window to consider the biology of CYP8B1 in glucolipid metabolism and to evaluate CYP8B1 inhibition as a therapeutic approach of crucial interest for metabolic diseases. SIGNIFICANCE STATEMENT The academic community has spent approximately 90 years interpreting the synthesis of bile acids. However, the 12α-hydroxylation of intermediates catalyzed by CYP8B1 is not completely mapped on the classic pathway, particularly for the C27 bile acids, the pivotal intermediates shuttling between mitochondria and peroxisomes. This work discloses the forgotten 12α-hydroxylation pathway from dihydroxycoprostanic acid into trihydroxycoprostanic acid. The present finding may facilitate evaluating CYP8B1 inhibition as a therapeutic approach of crucial interest for metabolic diseases. Full Article
health and food Comparison of the CYP3A Selective Inhibitors CYP3cide, Clobetasol, and Azamulin for Their Potential to Distinguish CYP3A7 Activity in the Presence of CYP3A4/5 [Articles] By dmd.aspetjournals.org Published On :: 2024-10-16T09:02:03-07:00 The CYP3A7 enzyme accounts for ~50% of the total cytochrome P450 (P450) content in fetal and neonatal livers and is the predominant P450 involved in neonatal xenobiotic metabolism. Additionally, it is a key player in healthy birth outcomes through the oxidation of dehydroepiandrosterone (DHEA) and DHEA-sulfate. The amount of the other hepatic CYP3A isoforms, CYP3A4 and CYP3A5, expressed in neonates is low but highly variable, and therefore the activity of individual CYP3A isoforms is difficult to differentiate due to their functional similarities. Consequently, a better understanding of the contribution of CYP3A7 to drug metabolism is essential to identify the risk that drugs may pose to neonates and developing infants. To distinguish CYP3A7 activity from CYP3A4/5, we sought to further characterize the selectivity of the specific CYP3A inhibitors CYP3cide, clobetasol, and azamulin. We used three substrate probes, dibenzylfluorescein, luciferin-PPXE, and midazolam, to determine the IC50 and metabolism-dependent inhibition (MDI) properties of the CYP3A inhibitors. Probe selection had a significant effect on the IC50 values and P450 inactivation across all inhibitory compounds and enzymes. CYP3cide and azamulin were both identified as MDIs and were most specific for CYP3A4. Contrary to previous reports, we found that clobetasol propionate (CP) was not an MDI of CYP3A5 but was more selective for CYP3A5 over CYP3A4/7. We further investigated CYP3cide and CP’s ability to differentiate CYP3A7 activity in an equal mixture of recombinant CYP3A4, CYP3A5, and CYP3A7, and our results provide confidence of CYP3cide’s and CP’s ability to distinguish CYP3A7 activity in the presence of the other CYP3A isoforms. SIGNIFICANCE STATEMENT These findings provide valuable insight regarding in vitro testing conditions to investigate the metabolism of new drug candidates and help determine drug safety in neonates. The results presented here also clearly demonstrate the effect that probe selection may have on CYP3A cytochrome P450 inhibition studies. Full Article
health and food Early Prediction and Impact Assessment of CYP3A4-Related Drug-Drug Interactions for Small-Molecule Anticancer Drugs Using Human-CYP3A4-Transgenic Mouse Models [Articles] By dmd.aspetjournals.org Published On :: 2024-10-16T09:02:03-07:00 Early detection of drug-drug interactions (DDIs) can facilitate timely drug development decisions, prevent unnecessary restrictions on patient enrollment, resulting in clinical study populations that are not representative of the indicated study population, and allow for appropriate dose adjustments to ensure safety in clinical trials. All of these factors contribute to a streamlined drug approval process and enhanced patient safety. Here we describe a new approach for early prediction of the magnitude of change in exposure for cytochrome P450 (P450) CYP3A4-related DDIs of small-molecule anticancer drugs based on the model-based extrapolation of human-CYP3A4-transgenic mice pharmacokinetics to humans. Victim drugs brigatinib and lorlatinib were evaluated with the new approach in combination with the perpetrator drugs itraconazole and rifampicin. Predictions of the magnitude of change in exposure deviated at most 0.99- to 1.31-fold from clinical trial results for inhibition with itraconazole, whereas exposure predictions for the induction with rifampicin were less accurate, with deviations of 0.22- to 0.48-fold. Results for the early prediction of DDIs and their clinical impact appear promising for CYP3A4 inhibition, but validation with more victim and perpetrator drugs is essential to evaluate the performance of the new method. SIGNIFICANCE STATEMENT The described method offers an alternative for the early detection and assessment of potential clinical impact of CYP3A4-related drug-drug interactions. The model was able to adequately describe the inhibition of CYP3A4 metabolism and the subsequent magnitude of change in exposure. However, it was unable to accurately predict the magnitude of change in exposure of victim drugs in combination with an inducer. Full Article
health and food Quantitative Proteomics for Translational Pharmacology and Precision Medicine: State of The Art and Future Outlook [Minireview] By dmd.aspetjournals.org Published On :: 2024-10-16T09:02:03-07:00 Over the past 20 years, quantitative proteomics has contributed a wealth of protein expression data, which are currently used for a variety of systems pharmacology applications, as a complement or a surrogate for activity of the corresponding proteins. A symposium at the 25th North American International Society for the Study of Xenobiotics meeting, in Boston, in September 2023, was held to explore current and emerging applications of quantitative proteomics in translational pharmacology and strategies for improved integration into model-informed drug development based on practical experience of each of the presenters. A summary of the talks and discussions is presented in this perspective alongside future outlook that was outlined for future meetings. SIGNIFICANCE STATEMENT This perspective explores current and emerging applications of quantitative proteomics in translational pharmacology and precision medicine and outlines the outlook for improved integration into model-informed drug development. Full Article
health and food Roles of the ABCG2 Transporter in Protoporphyrin IX Distribution and Toxicity [Special Section on New and Emerging Areas and Technologies in Drug Metabolism and Disposition, Part II-Minireview] By dmd.aspetjournals.org Published On :: 2024-10-16T09:02:03-07:00 ATP-binding cassette transporter subfamily G member 2 (ABCG2) is a membrane-bound transporter responsible for the efflux of various xenobiotics and endobiotics, including protoporphyrin IX (PPIX), an intermediate in the heme biosynthesis pathway. Certain genetic mutations and chemicals impair the conversion of PPIX to heme and/or increase PPIX production, leading to PPIX accumulation and toxicity. In mice, deficiency of ABCG2 protects against PPIX-mediated phototoxicity and hepatotoxicity by modulating PPIX distribution. In addition, in vitro studies revealed that ABCG2 inhibition increases the efficacy of PPIX-based photodynamic therapy by retaining PPIX inside target cells. In this review, we discuss the roles of ABCG2 in modulating the tissue distribution of PPIX, PPIX-mediated toxicity, and PPIX-based photodynamic therapy. SIGNIFICANCE STATEMENT This review summarized the roles of ABCG2 in modulating PPIX distribution and highlighted the therapeutic potential of ABCG2 inhibitors for the management of PPIX-mediated toxicity. Full Article
health and food Assessing Trends in Cytokine-CYP Drug Interactions and Relevance to Drug Dosing [Special Section on New and Emerging Areas and Technologies in Drug Metabolism and Disposition, Part II-Minireview] By dmd.aspetjournals.org Published On :: 2024-10-16T09:02:03-07:00 The regulation of drug-metabolizing enzymes and transporters by cytokines has been extensively studied in vitro and in clinic. Cytokine-mediated suppression of cytochrome P450 (CYP) or drug transporters may increase or decrease the systemic clearance of drug substrates that are primarily cleared via these pathways; neutralization of cytokines by therapeutic proteins may thereby alter systemic exposures of such drug substrates. The Food and Drug Administration recommends evaluating such clinical drug interactions during clinical development and has provided labeling recommendations for therapeutic proteins. To determine the clinical relevance of these drug interactions to dose adjustments, trends in steady-state exposures of CYP-sensitive substrates coadministered with cytokine modulators as reported in the University of Washington Drug Interaction Database were extracted and examined for each of the CYPs. Coadministration of cytochrome P450 family 3 subfamily A (CYP3A) (midazolam/simvastatin), cytochrome P450 subfamily 2C19 (omeprazole), or cytochrome P450 subfamily 1A2 (caffeine/tizanidine) substrates with anti-interleukin-6 and with anti-interleukin-23 therapeutics led to changes in systemic exposures of CYP substrates ranging from ~ –58% to ~35%; no significant trends were observed for cytochrome P450 subfamily 2D6 (dextromethorphan) and cytochrome P450 subfamily 2C9 (warfarin) substrates. Although none of these changes in systemic exposures have been reported as clinically meaningful, dose adjustment of midazolam for optimal sedation in acute care settings has been reported. Simulated concentration-time profiles of midazolam under conditions of elevated cytokine levels when coadministered with tocilizumab, suggest a ~six- to sevenfold increase in midazolam clearance, suggesting potential implications of cytokine–CYP drug interactions on dose adjustments of sensitive CYP3A substrates in acute care settings. Additionally, this article also provides a brief overview of nonclinical and clinical assessments of cytokine–CYP drug interactions in drug discovery and development. SIGNIFICANCE STATEMENT There has been significant progress in understanding cytokine-mediated drug interactions for CYP-sensitive substrates. This article provides an overview of the progress in this field, including a trend analysis of systemic exposures of CYP-sensitive substrates coadministered with anti-interleukin therapeutics. In addition, the review also provides a perspective of current methods used to assess these drug interactions during drug development and a focus on individualized medicine, particularly in acute care settings. Full Article
health and food Pharmacometabolomics in Drug Disposition, Toxicity, and Precision Medicine [Special Section on New and Emerging Areas and Technologies in Drug Metabolism and Disposition, Part II-Minireview] By dmd.aspetjournals.org Published On :: 2024-10-16T09:02:03-07:00 The precision medicine initiative has driven a substantial change in the way scientists and health care practitioners think about diagnosing and treating disease. While it has long been recognized that drug response is determined by the intersection of genetic, environmental, and disease factors, improvements in technology have afforded precision medicine guided dosing of drugs to improve efficacy and reduce toxicity. Pharmacometabolomics aims to evaluate small molecule metabolites in plasma and/or urine to help evaluate mechanisms that predict and/or reflect drug efficacy and toxicity. In this mini review, we provide an overview of pharmacometabolomic approaches and methodologies. Relevant examples where metabolomic techniques have been used to better understand drug efficacy and toxicity in major depressive disorder and cancer chemotherapy are discussed. In addition, the utility of metabolomics in drug development and understanding drug metabolism, transport, and pharmacokinetics is reviewed. Pharmacometabolomic approaches can help describe factors mediating drug disposition, efficacy, and toxicity. While important advancements in this area have been made, there remain several challenges that must be overcome before this approach can be fully implemented into clinical drug therapy. SIGNIFICANCE STATEMENT Pharmacometabolomics has emerged as an approach to identify metabolites that allow for implementation of precision medicine approaches to pharmacotherapy. This review article provides an overview of pharmacometabolomics including highlights of important examples. Full Article
health and food Characterizing the Distribution of a Stimulator of Interferon Genes Agonist and Its Metabolites in Mouse Liver by Matrix-Assisted Laser Desorption/Ionization Imaging Mass Spectrometry [Special Section on New and Emerging Areas and Technologies in Drug Met By dmd.aspetjournals.org Published On :: 2024-10-16T09:02:03-07:00 A STING (stimulator of interferon genes) agonist GSK3996915 under investigation in early discovery for hepatitis B was orally dosed to a mouse model for understanding the parent drug distribution in liver, the target organ. Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) was used to quantify the distribution of GSK3996915 in liver collected from mice administered a single oral dose at 90 mg/kg. GSK3996915 was detected with a zonal distribution localized in the portal triad and highly concentrated in the main bile ducts, indicating clearance through biliary excretion. High spatial resolution imaging showed the distribution of the parent drug localized to the cellular populations in the sinusoids, including the Kupffer cells. Additionally, a series of drug-related metabolites were observed to be localized in the central zones of the liver. These results exemplify the potential of utilizing MALDI IMS for measuring not only quantitative drug distribution and target exposure but also drug metabolism and elimination in a single suite of experiments. SIGNIFICANCE STATEMENT An integrated imaging approach utilizing matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) complemented with immunohistochemistry (IHC) and histology was used to address the question of target exposure at the cellular level. Localized quantification of the parent drug in the target organ and identification of potential metabolites in the context of tissue histology were also achieved in one experimental suite to support characterization of pharmacokinetic properties of the drug in the early discovery stage.: Full Article
health and food Evaluating Drug-Drug Interaction Risk Associated with Peptide Analogs Using advanced In Vitro Systems [Special Section on New and Emerging Areas and Technologies in Drug Metabolism and Disposition, Part II] By dmd.aspetjournals.org Published On :: 2024-10-16T09:02:03-07:00 Drug–drug interaction (DDI) assessment of therapeutic peptides is an evolving area. The industry generally follows DDI guidelines for small molecules, but the translation of data generated with commonly used in vitro systems to in vivo is sparse. In the current study, we investigated the ability of advanced human hepatocyte in vitro systems, namely HepatoPac, spheroids, and Liver-on-a-chip, to assess potential changes in regulation of CYP1A2, CYP2B6, CYP3A4, SLCO1B1, and ABCC2 in the presence of selected therapeutic peptides, proteins, and small molecules. The peptide NN1177, a glucagon and GLP-1 receptor co-agonist, did not suppress mRNA expression or activity of CYP1A2, CYP2B6, and CYP3A4 in HepatoPac, spheroids, or Liver-on-a-chip; these findings were in contrast to the data obtained in sandwich cultured hepatocytes. No effect of NN1177 on SLCO1B1 and ABCC2 mRNA was observed in any of the complex systems. The induction magnitude differed across the systems (e.g., rifampicin induction of CYP3A4 mRNA ranged from 2.8-fold in spheroids to 81.2-fold in Liver-on-a-chip). Small molecules, obeticholic acid and abemaciclib, showed varying responses in HepatoPac, spheroids, and Liver-on-a-chip, indicating a need for EC50 determinations to fully assess translatability data. HepatoPac, the most extensively investigated in this study (3 donors), showed high potential to investigate DDIs associated with CYP regulation by therapeutic peptides. Spheroids and Liver-on-a-chip were only assessed in one hepatocyte donor and further evaluations are required to confirm their potential. This study establishes an excellent foundation toward the establishment of more clinically-relevant in vitro tools for evaluation of potential DDIs with therapeutic peptides. SIGNIFICANT STATEMENT At present, there are no guidelines for drug–drug interaction (DDI) assessment of therapeutic peptides. Existing in vitro methods recommended for assessing small molecule DDIs do not appear to translate well for peptide drugs, complicating drug development for these moieties. Here, we establish evidence that complex cellular systems have potential to be used as more clinically-relevant tools for the in vitro DDI evaluation of therapeutic peptides. Full Article
health and food Exogenous Pregnane X Receptor Does Not Undergo Liquid-Liquid Phase Separation in Nucleus under Cell-Based In Vitro Conditions [Special Section on New and Emerging Areas and Technologies in Drug Metabolism and Disposition, Part II] By dmd.aspetjournals.org Published On :: 2024-10-16T09:02:03-07:00 Pregnane X receptor (PXR) belongs to the nuclear receptor superfamily that plays a crucial role in hepatic physiologic and pathologic conditions. Phase separation is a process in which biomacromolecules aggregate and condense into a dense phase as liquid condensates and coexist with a dilute phase, contributing to various cellular and biologic functions. Until now, whether PXR could undergo phase separation remains unclear. This study aimed to investigate whether PXR undergoes phase separation. Analysis of the intrinsically disordered regions (IDRs) using algorithm tools indicated a low propensity of PXR to undergo phase separation. Experimental assays such as hyperosmotic stress, agonist treatment, and optoDroplets assay demonstrated the absence of phase separation for PXR. OptoDroplets assay revealed the inability of the fusion protein of Cry2 with PXR to form condensates upon blue light stimulation. Moreover, phase separation of PXR did not occur even though the mRNA and protein expression levels of PXR target, cytochrome P450 3A4, changed after sorbitol treatment. In conclusion, for the first time, these findings suggested that exogenous PXR does not undergo phase separation following activation or under hyperosmotic stress in nucleus of cells. SIGNIFICANCE STATEMENT PXR plays a critical role in hepatic physiological and pathological processes. The present study clearly demonstrated that exogenous PXR does not undergo phase separation after activation by agonist or under hyperosmotic stress in nucleus. These findings may help understand PXR biology. Full Article