r

Method and equipment for adjusting power amplification

The present invention refers to a method for adjusting power levels of channels (15) in an optical link (7) of an optical network comprising at least one optical amplifier (9) wherein the power distribution among the channels (15) of the optical link (7) is achieved in function of: target power levels based on the features of corresponding connections and of link physical features,total available power in said at least one amplifier (9),features of control means allowing the power distribution, and wherein for a channel corresponding to a connection having a higher vulnerability characterizing parameter, the tolerated difference between an actual channel power level and the target power level is lower than for a channel corresponding to a connection having a lower vulnerability characterizing parameter.




r

Optical transport network system, optical-signal transmission path selecting method, and optical transmission device

An optical transport network system includes a plurality of NEs, each transmitting wavelength-multiplexed optical signals. Each NE includes a routing information DB that is used to store reachable area information, which contains identifiers of other NEs in a range within which the optical signals can be transmitted from the own NE without using an REG. A FROM NE includes a path candidate searching unit that searches for a plurality of path candidates for transmitting optical signals from the FROM NE to a TO NE. The TO NE includes a path selecting unit that selects a path for transmitting optical signals from among a plurality of path candidates. The path selecting unit obtains the number of times for which the REG is used for each of the plurality of path candidates; and, based on each number of times that is obtained, selects a path for transmitting the optical signals.




r

Layer 1 fast provisioning and right sizing of bandwidth for layer 2/3

Additional bandwidth is provisioned to layer 2/3 networks by initially provisioning optical wavelength channels to meet incremental needs for additional capacity. When bandwidth requirements grow large enough, a wavelength-sized channel is provisioned to meet the bandwidth needs, and the previously provisioned optical wavelength channels are freed up to be reused for additional growth. The optical wavelength channels may be channelized VLANs mapped to resizable optical channel data units such as ODUflex units.




r

Optical line termination node and passive optical network

An optical line termination node has a first connection arrangement for connecting a working fiber, a second connection arrangement for connecting a protection fiber, a transceiver arrangement having first primary link and a first secondary link, and protection switching means configured for being switched either in a working operating state or in a protection operating state.




r

Minimizing bandwidth narrowing penalities in a wavelength selective switch optical network

This invention relates to provisioning wavelength-selective switches and reconfigurable optical add-drop multiplexers to minimize the bandwidth narrowing effect from the optical filters. Novel architectures and methods are disclosed that can significantly reduce bandwidth-narrowing on channels in a reconfigurable WDM network where a large number of optical filter elements are cascaded. Instead of blocking unused channels as in the prior art, unused channels are selectively provisioned depending on the state of their adjacent channels. Unused adjacent channels of an active channel are provisioned to follow the same path as the active channels. As each channels is deployed, the channel frequency is selected so as to minimize bandwidth narrowing.




r

System and method for compensating signal degradation in dual polarization optical systems

A method for adjusting an optical signal includes determining a polarization dependent loss (PDL) value associated with the optical signal, determining an angle between the optical signal and one or more axes of PDL, determining an amount of nonlinear phase noise due to PDL and nonlinear effects upon the optical signal based upon the PDL value and the angle, determining a phase rotation based upon the amount of nonlinear phase noise, and applying the phase rotation to the optical signal.




r

Optical module having a plurality of optical sources

An optical module that outputs a wavelength multiplexed optical signal is disclosed. The optical module provides at least first to third optical source, a wavelength multiplexer, a polarization rotator, and a polarization multiplexer. The optical sources each outputting first to third optical signals with a wavelength different from others. The wavelength multiplexer multiplexes the first optical signal with the third optical signal. The polarization rotator rotates the polarization vector of one of the multiplexed first and third optical signals and the second signal by substantially 90°. The polarization multiplexer multiplexes the polarization rotated optical signal with the second optical signal.




r

Providing digital data services in optical fiber-based distributed radio frequency (RF) communication systems, and related components and methods

Optical fiber-based distributed communications systems that provide and support both RF communication services and digital data services are disclosed herein. The RF communication services and digital data services can be distributed over optical fiber to client devices, such as remote antenna units for example. In certain embodiments, digital data services can be distributed over optical fiber separate from optical fiber distributing RF communication services. In other embodiments, digital data services can be distributed over common optical fiber with RF communication services. For example, digital data services can be distributed over common optical fiber with RF communication services at different wavelengths through wavelength-division multiplexing (WDM) and/or at different frequencies through frequency-division multiplexing (FDM). Power distributed in the optical fiber-based distributed communications system to provide power to remote antenna units can also be accessed to provide power to digital data service components.




r

Device identification apparatus and remote control system

The device identification apparatus includes: a remote controller signal detecting section for detecting an optical signal from a remote controller; a receiving section for receiving the optical signal from the remote controller; a signal decryption section for decrypting the optical signal received by the receiving section; and a transmitting section for transmitting a device identification signal when the optical signal is a device selecting signal, and configured such that operations of the receiving section, the signal decryption section, and the transmitting section are started in response to a detecting signal of the remote controller signal detecting section, thereby realizing a device identification apparatus in which power consumption during standby is minimized.




r

Laser relay for free space optical communications

A laser relay module for free space optical communications including an optical telescope for receiving and transmitting optical beams; an optical diplexer for separating transmitting and received optical beams; an optical amplifier; a modulated beacon laser for line of sight control of a plurality of communicating remote network nodes; a beacon beam detector for detecting an incoming beacon optical beam for line of sight control of the optical telescope and receiving data from other network nodes; and means for inserting an output of the modulated beacon laser into the optical telescope for transmission to another network node, and for transporting the incoming beacon optical beam to the beacon detector.




r

Optical transceiver having an extra area in circuit board for mounting electronic circuits

An optical transceiver of one embodiment includes a transmitter optical subassembly to transmit an optical signal, a receiver optical subassembly to receive an optical signal, a mother board, a daughter board, and a housing. The mother board mounts electronic circuits that electrically communicate with the optical transmitter optical subassembly and the receiver optical subassembly. The daughter board mounts other electronic circuits that electrically communicate with the optical transmitter optical subassembly and the receiver optical subassembly. The daughter board has an extra area mounting a portion of the other electronic circuits. The housing defines a space for installing the optical transmitter optical subassembly, the receiver optical subassembly, the mother board, and the daughter board. The extra area is disposed outside the space.




r

Intrapersonal data communication systems

Intrapersonal communication systems and methods that provide an optical digital signal link between two or more local devices are disclosed. In some embodiments, the system includes a first signal converter disposed at a first end of the optical digital signal link and configured to convert between electrical digital signals from a first local device and optical digital signals from the optical digital signal link. The system can include an optical connector having a non-contact portion configured to couple optical digital signals between the first signal converter and the optical digital signal link across a gap. The system can include a second signal converter disposed at a second end of the optical digital signal link and configured to convert between electrical digital signals from the second local device and optical digital signals from the optical digital signal link.




r

Clock and data recovery unit and power control method therefor and PON system

In the present invention, wasted power consumption caused when a clock and data recovery unit in an optical network unit in a PON system is activated from a power-saving state is reduced and rapid, secure communication is performed. A clock and data recovery unit includes a phase-locked loop that can be set to normal mode or power-saving mode and that includes a voltage-controlled oscillator and recovers a clock signal and a data signal from input signals. The clock and data recovery unit includes a reference clock multiplier circuit that multiplies a reference clock signal and outputs the multiplied reference clock signal; and a frequency training loop that includes the same voltage-controlled oscillator and performs synchronous oscillation training by the voltage-controlled oscillator using the reference clock multiplier circuit before the phase-locked loop transitions from power-saving mode to normal mode.




r

Illumination device and method for embedding data symbols in a luminance output

The invention relates to embedding data symbols of a data signal into a luminance output of an illumination device. The device includes a controller configured for receiving a first base pattern and a second base pattern within a frame period, and generating a shifted second pattern by phase shifting the second base pattern within the frame period with respect to the first base pattern in response to the data signal such that the data symbols are embedded in the luminance output of the device. The device also includes a first light source configured to generate a first luminance output in response to the first base pattern and a second light source configured to generate a second luminance output in response to the shifted second pattern. The first and second luminance outputs have different output spectra and the luminance output of the illumination device comprises both the first and second luminance outputs. With this approach, the short-time average light output of the illumination device remains constant, decreasing the visible flicker and allowing the use of lower switching frequencies relative to the prior art approaches.




r

Network management system, repeater, and repeating method

A repeater includes a reception part configured to receive an optical signal transmitted by wavelength division multiplexing from a preceding repeater in a path from a source to a destination; a determination part configured to determine the channel allocation of the signal received by the reception part by determining a bit rate and a modulation technique with respect to each of channels in the received signal; and a detection part configured to detect a prohibited channel not to be included in the optical signal to be transmitted from the repeater, based on the channel allocation and a predetermined criterion.




r

Transmitter optical module

Disclosed is a transmitter optical module which includes a first package generating an optical signal; a second package bonded with the first package by using chip-to-chip bonding, having a silicon optical circuit platform structure, and amplifying the optical signal; and an optical waveguide forming a transmission path of the optical signal from the first package to the second package.




r

Mitigating signal offsets in optical receivers

An optical receiver circuit is disclosed in which a number of electrical signals are processed to extract data encoded therein. The electrical signals may be compared during the process to selectively remove one or more waveforms from one or more corresponding electrical signals. Various data signals, each including one or more waveforms, may then be processed to extract the encoded data. The optical receiver circuit reduces, or eliminates, electrical offsets which may be present in one or more of the electrical signals to reduce corresponding errors in the encoded data signals.




r

Cutting edge replacement type groove forming tool and end face groove forming method

A cutting insert (130) is formed to be rotationally symmetric with respect to an axis line (C3) of a height direction and to be planarly symmetric with respect to a virtual plane of the insert (VS1), an axis line (C2) of a traverse direction is gradually inclined toward the front of a rotational direction around which a workpiece (W) rotates moving toward a first traverse direction (C2A), an axis line (C1) of a longitudinal direction extends toward a lower surface side of an insert body (131) so as to approach a virtual plane of the tool moving toward a first longitudinal direction (C1A), and one corner portion (143C) in the other cutting edge (132B) is disposed further toward a first traverse direction (C2A) than one corner portion (143A) in one cutting edge (132A).




r

Skiving tool comprising cutter bars

A skiving tool for manufacturing a rotationally symmetrical periodical structure on a work piece by means of a power skiving method. The skiving tool comprises a base body comprising a central rotation axis and a plurality of receiving openings and a plurality of cutter bars, fewer than or equal to the number of receiving openings. Each of the receiving openings has an elongate shape having a longitudinal axis, and the receiving openings can be arranged uniformly around the central rotation axis. The longitudinal axes of the receiving openings are generators of a rotation hyperboloid, which is arranged rotationally symmetrical to the central rotation axis.




r

Exchangeable cutting insert

A cutting insert having a plurality of corner cutting edges has an upper face, a lower face, two longitudinal side faces and two transversal side faces connecting the upper face and the lower face. A through hole passes through central parts of the upper face and the lower face. The longitudinal side faces are opposite to each other and normal to both upper and lower faces, as are the transversal side faces. The upper face and the lower face are each provided with two chip discharge grooves, each chip discharge groove extending along a corresponding one of the transversal side faces, the two chip discharge grooves being inclined oppositely in the transverse direction so that the upper face and the lower face are each provided with two corner cutting edges at diagonally opposite corners. The longitudinal length of the insert is longer than the transversal length of the insert. The cutting insert can be mounted stably to a small-diametered cutter with a sufficient mounting surface.




r

Toolholder assembly with internal coolant delivery system

A toolholder assembly includes a toolholder body having a coolant passage and a cutting insert seated within a recess of the body. The cutting insert includes an insert orifice extending between a top face and a bottom face that aligns with the coolant passage. A lock pin includes a lock pin orifice that aligns with and is in fluid communication with the coolant passage of the body. The lock pin orifice has an outlet port to allow the fluid to flow through the lock pin orifice and exit through the outlet port. A lock pin ring includes a coolant port in fluid communication with the outlet port of the lock pin to effectively discharge cooling fluid in the direction of a cutting area of the cutting insert.




r

Milling cutter and method of operating same, and other machine tools, and an adjustment mechanism therefor

Milling cutter and method of operating same, and other machine tools, and an adjustment mechanism therefor. A cutting insert is adjusted by moving a resilient web with an adjusting screw.




r

Milling tool as well as set of milling inserts of a milling tool

A milling tool for slot milling includes a tool body and a plurality of separated first seats, which form root insert seats for root inserts arranged one after the other along a first line and a plurality of separated flank insert seats that includes a plurality of second seats for flank inserts . The plurality of second seats is arranged one after the other along a second line on a primary side of the root insert seats. A plurality of third seats for flank inserts is arranged one after the other along a third line on a secondary side of the root insert seats. Each flank insert seat includes a bottom surface, an inner side surface, and an outer side surface. Each flank insert includes an under side, an opposite upper side, and a circumferential edge side that forms a rake face connecting the upper side and the underside.




r

Cutting insert, cutting tool, and method of manufacturing machined product using the same

A cutting insert of the present invention includes an upper surface; a lower surface; a side surface; a cutting edge which is located along an intersection of the upper surface and the side surface, and comprises a major cutting edge, a flat cutting edge, and a minor cutting edge located between the major cutting edge and the flat cutting edge; and a land part located along the cutting edge on the upper surface. The land part includes a minor cutting edge land portion located correspondingly to the minor cutting edge. The minor cutting edge land portion is inclined downward toward a central part of the upper surface. The present invention also provides a cutting tool including the cutting insert, and a method of manufacturing a machined product by using the cutting tool.




r

Severing and beveling tool

A tool for both severing the end of a pipe and beveling the cut end includes a spiral cutting mill having an elongate end received in the bore of a frustoconical shell cutter. The shell cutter is locked for rotation with the cutting mill such that a single tool has two cutting surfaces, one for severing a length of pipe and one for beveling the outer edge thereof.




r

Rotary cutting tool

To provide a rotary cutting tool in which a satisfactory cut state in which burrs and uncut portions are absent is obtained, even when counterboring is applied to a composite honeycomb member. A first cutting-chip discharge groove (2) disposed from a tool tip towards a base-end side is formed on an outer periphery of a tool body (1); a plurality of second cutting-chip discharge grooves (3), provided along a spiral disposed from the tool tip towards the base-end side so as to intersect with the first cutting-chip discharge groove (2), are formed on an outer periphery section of the tool body (1) where the first cutting-chip discharge groove (2) is absent; and a base-end-side outer periphery cutting edge (4) is formed on an intersection ridge between a rake face of a second cutting-chip discharge groove (3), which faces a direction of tool rotation, and an outer peripheral surface of the tool body (1) or an outer peripheral relief face; wherein an end cutting edge (5) is provided at a tip section of the tool body (1); a tip-side outer periphery cutting edge (6) is formed on an intersection ridge between the rake face at a tip section of a first cutting-chip discharge groove (2) and an outer peripheral surface of the tip section of the tool body (1) or an outer periphery relief face (18); and the base-end-side outer periphery cutting edge (4) is provided further towards the tool base-end side than the tip-side outer periphery cutting edge (6).




r

Sintered cubic boron nitride compact and sintered cubic boron nitride compact tool

It is an object of the present invention to provide a sintered cBN compact having excellent wear resistance and fracture resistance even in machining centrifugally cast iron having a property of being difficult to machine, and to provide a sintered cBN compact tool. A sintered cBN compact of the present invention contains 20% by volume or more and 65% by volume or less of cBN and, as a binder, 34% by volume or more and less than 80% by volume of Al2O3, at least one selected from the group consisting of nitrides, carbides, carbonitrides, borides, and boronitrides of Zr and solid solutions thereof (hereinafter, referred to as “X”), and ZrO2, the total amount of X and ZrO2 being 1.0% by volume or more and 6.0% by volume or less, the volume ratio of ZrO2 to Al2O3, ZrO2/Al2O3, being 0.010 or more and less than 0.100, in which the ratio Itetragonal ZrO2(101)/IαAl2O3(110) is 0.1 or more and 3 or less, where Itetragonal ZrO2(101) is the intensity of the (101) plane of tetragonal ZrO2 and IαAl2O3(110) is the intensity of the (110) plane of αAl2O3 among X-ray diffraction peaks of the sintered cBN compact.




r

Cutting insert and chip-control arrangement therefor

A cutting insert has at least first and second side surfaces, with a chip-control arrangement. The chip-control arrangement includes at least one projection disposed at an intersection of a corner of the cutting insert. When the chip-control arrangement includes two projections they can be disposed symmetrically on both sides of the intersection. Each of the at least one projections is elongated and extends longitudinally along an associated side surface.




r

Cutting insert and cutting tool

A cutting insert is capable of boring or drilling without the formation of a prepared hole in a workpiece. A cutting edge includes a cutting edge portion extending from the outer peripheral side to the tool center axis side of a cutting tool body when the cutting insert is attached to a mounting seat, reaching a first plane including the tool center axis, and traversing from one side to the other side of a second plane which is perpendicular to the first plane and which includes the tool center axis.




r

Super-hard cutter inserts and tools

A cutter insert assembly for a drill bit for boring into the earth, comprising a super-hard structure clampable to a support body by means of a clamp mechanism; the clamp mechanism comprising opposed or opposable compression members connected or connectable by a tension member capable of sustaining a clamping force between the compression members when the cutter insert assembly is in a clamped condition, in which condition the compression members exert opposing compressive forces on the super-hard structure and the support body, operable to clamp the super-hard structure to the support body, and in which condition the cutter insert assembly is self-supporting and capable of being mounted onto a drill bit body.




r

Cutting insert and shim for milling cutters

A cutting tool includes a polygonal cutter body and an end cutting insert for chipforming machining mounted in a serrated seat disposed at an axial end of the cutter body. A bottom surface of the insert has a plurality of parallel serrations meshing with corresponding serrations of the seat. The serrations extend transversely relative to the longitudinal axis for resisting axially rearward cutting forces applied to the insert. The seat is formed directly by the cutter body, or by a shim disposed beneath the insert. The shim is provided with a downward lip to transfer axial forces to the cutter body. The insert can be square or triangular, wherein the serrations are in the form of a plurality of sets of parallel serrations disposed adjacent respective cutting edges.




r

Cutting insert

A cutting insert with a substantially triangular or square basic form is particularly suited for face milling at high feed rates. It has convex cutting edges, which are each made up of a circular arc and at least one straight portion. Each cutting edge has, adjoining a cutting corner, a straight face cutting edge that merges with a main cutting edge, having 1 to 3 straight portions, a circular portion with a radius of at most 80% of the radius Ri of the inscribed circle. The cutting edges have an all-round cutting edge chamfer with a chamfer angle α. This chamfer angle α has along the cutting corners a value in the range from −10° to −20° and changes continuously along sub-portions of the face cutting edge and main cutting edge and along the circular portion to a constant value in the range from 0° to −10°.




r

Cartridge with fine adjustment means

Cartridge for supporting at least one cutting insert and for being received on a tool body is disclosed. At least a first portion of the cartridge may be stationary mounted and the cartridge includes at least one pocket for receiving a cutting element. A coarse and a fine adjustment means are provided by means of which at least a second portion of the cartridge including the pocket may be moved with respect to the tool body and wherein the coarse and the fine adjustment means are merely provided at the cartridge.




r

Electrode milling cutter with milling edges interrupted by cut-outs

Electrode milling cutter for machining spot welding electrodes, said electrode milling cutter having one or more milling edges, wherein at least one of the milling edges is interrupted by one or more cut-outs at one or more points. The invention also relates to a milling device and to an apparatus for subsequently machining spot welding electrodes.




r

Cutting insert, cutting tool, and method of manufacturing machined product using them

A cutting insert includes an upper surface; a lower surface; a side surface which is connected to each of the upper surface and the lower surface and includes a first side surface, a second side surface and a third side surface being adjacent to each other in order; an upper cutting edge including an upper major cutting edge located at an intersection of the upper surface and the first side surface, and an upper flat cutting edge located closer to the upper major cutting edge in an intersection of the upper surface and the second side surface; and a lower cutting edge including a lower major cutting edge located at an intersection of the lower surface and the third side surface, and a lower flat cutting edge located closer to the lower major cutting edge in an intersection of the lower surface and the second side surface. The second side surface comprises an upper flank surface connected to the upper flat cutting edge, and a lower flank surface connected to the lower flat cutting edge. As going from the upper surface to the lower surface, the upper flank surface is closer to a central axis extending between the upper surface and the lower surface and the lower flank surface is separated from the central axis in a side sectional view. A cutting tool including the cutting insert, and a method of manufacturing a machined product by using the cutting tool are also provided.




r

Cutting tool, an arrangement and a method for chip removing machining with spring members for biasing a clamping body

In a cutting tool for chip removing machining a holder for a cutter has a body received therein and movable with surfaces to bear against the cutter for defining the position of the cutter in the direction of an intended axis of rotation of the holder as well as a screw which may be screwed in a threaded bore in the holder. Spring members are arranged to act between the holder and the body for biasing the body against said screw portions.




r

Cutting insert, cutting tool, and method of manufacturing machined product using the same

A cutting insert having excellent chip discharge performance is provided. The cutting insert (1) according to an embodiment of the present invention includes an upper surface (2), a lower surface (3), a side surface (4) connected to the upper surface (2) and the lower surface (3), and a cutting edge (5) which is located at an intersection of the upper surface (2) and the side surface (4), and includes a major cutting edge (51) and a flat cutting edge (52). The major cutting edge (51) includes a major cutting section (512) which has a concave shape and is inclined downward as a straight line connecting both ends thereof is away from the flat cutting edge (52) in a side view. A cutting tool (11) according to an embodiment of the present invention includes the cutting insert (1) and a holder (10) configured to attach the cutting insert (1) thereto.




r

Cutting insert and cutting tool

An upper surface of a cutting insert includes a first rake face and a second seating surface. A lower surface of the cutting insert includes a second rake face and a first seating surface. The cutting edge includes a first cutting edge portion formed at a crossing edge line portion between the first rake face and a flank face and a second cutting edge portion formed at a crossing edge line portion between the second rake face and the flank face. The first cutting edge portion and the crossing edge line portion between the first seating surface and the flank face are positioned opposite each other. The second cutting edge portion and the crossing edge line portion between the second seating surface and the flank face are positioned opposite each other.




r

Cutting insert, cutting tool, and method of manufacturing machined product using the same

A cutting insert according to an embodiment of the present invention includes an upper surface; a lower surface; a side surface located between the upper surface and the lower surface; at least one concave part extending in a thickness direction in the side surface, and having one end thereof located at the upper surface; and a cutting edge which is located at an intersection region of the upper surface and the side surface, and is divided into a plurality of divided cutting edges with the at least one concave part interposed therebetween. The upper surface includes a first raised part located inwardly of the at least one concave part, and a plurality of second raised parts respectively located inwardly of the plurality of divided cutting edges. The plurality of the second raised parts are located inward compared to one end of the first raised part close to the cutting edge in a top view. A cutting tool including the cutting insert, and a method of manufacturing a machined product using the cutting tool are also provided.




r

Cutting insert, cutting tool, and method of manufacturing machined product using them

A cutting insert according to an embodiment of the invention includes: an upper surface; a lower surface; a side surface which is connected to each of the upper surface and the lower surface, and includes a first side surface and a second side surface adjacent to each other; and a cutting edge including a major cutting edge located at an intersection of the upper surface and the first side surface, and a minor cutting edge located at an intersection of the upper surface and the second side surface. The upper surface includes a rake surface which is located along the major cutting edge, and is inclined downward as the upper surface separates from the major cutting edge. The second side surface includes a second upper constraining surface and a second lower constraining surface in order as the second side surface goes from the upper surface to the lower surface. The second upper constraining surface is inclined inward at an inclination angle α1 with reference to a central axis extending between the upper surface and the lower surface. The second lower constraining surface is continuous with the second upper constraining surface, and is inclined outward at an inclination angle α2 with reference to the central axis. A cutting tool with the cutting inserts, and a method of manufacturing a machined product by using the cutting tool are also provided.




r

Rotary cutting tool with effective chip evacuation

A rotary cutting tool, such as a milling cutter (10) includes a central hub (12), a cutting rim (14) and a plurality of spokes (22) connecting the central hub (12) to the cutting rim (14). Each spoke (22) is separated by an opening (32) and polygonal in cross-sectional shape formed by two side walls (22a, 22b), two front walls (22c, 22d) and a rear wall (22e). One of the side walls (22a) of each spoke (22) is formed at a pitch angle (42) with respect to a central axis (11) of the cutting tool (10) that is sufficient to cause lift of chips through the opening (32), thereby providing effective chip evacuation during a material removal operation.




r

Family of rotating cutting tools

A family of rotating cutting tools includes at least two toolholders having different diameters, each toolholder including a first side and a second side, the first side and the second side being substantially perpendicular to an axis of rotation of the toolholder, and at least one insert abutment surface on each of the first side and the second side. For each toolholder, the insert abutment surfaces on the first and second sides define an angle with a plane perpendicular to the axis of rotation of the toolholder, and the angle defined by the insert abutment surfaces and the plane perpendicular to the axis of rotation of the toolholder is different for the at least two toolholders having different diameters.




r

Milling cutter as well as a milling insert therefor

A milling cutter for chip removing machining, including a basic body rotatable in a predetermined direction around a center axis and having a front end surface and an envelope surface that extends axially backward from the front end surface and is concentric with the center axis. A number of indexable milling inserts are mounted in respective peripherally spaced-apart seats having a mutually fixed pitch, each milling insert including an upper side, an under side and at least one clearance surface, the clearance surface together with the upper side delimiting at least two alternately active cutting edges that are uniform in their extension between first and second end points. The cutting edges of each milling insert are situated on different levels in relation to the under side of the milling insert to alter the effective pitch between the active cutting edges of the milling inserts by indexing of at least one of the milling inserts.




r

Double-sided cutting inserts with anti-rotation features

A double-sided cutting insert may generally comprise a top surface, a bottom surface, at least one side surface interconnecting the top surface and the bottom surface and forming at least one cutting edge, a through hole extending between the top surface and bottom surface, wherein each of the top surface and bottom surface comprise at least one anti-rotation element. The cutting insert may comprise a single anti-rotation element on the top surface and a single anti-rotation element on the bottom surface. The anti-rotation element may be proximate to the through hole. A cutting tool using the cutting inserts, as well as methods of making and using the same are also described.




r

Cutting insert and cutting tool

A cutting insert is provided with a plurality of cutting portions formed at the intersection portion of each end surface and a peripheral surface. Each cutting portion includes first and second cutting edges. First corners and second corners which differ in their internal angles are alternately formed in each end surface. An internal angle of the first corner is smaller than an internal angle of the second corner. Each first cutting edge has a portion extending to approach the median plane as a distance from a corresponding first corner increases. A first side surface portion extending on the peripheral surface from each first cutting edge forms an insert internal obtuse angle, and a second side surface portion extending on the peripheral surface from each second cutting edge forms an insert internal acute angle.




r

Surface-coated WC-based cemented carbide insert

Provided is a surface-coated cemented carbide insert obtained by containing at least WC powder and Co powder as raw materials, including a WC-based cemented carbide obtained by forming and sintering mixed raw materials containing at least any of (a) Zr compound powder, Nb compound powder, and Ta compound powder, (b) complex compound powder of Nb and Ta, and Zr compound powder, (c) complex compound powder of Nb, Ta, and Zr, (d) complex compound powder of Nb, Zr, and Ta compound powder, and (e) complex compound powder of Ta and Zr, and Nb compound powder, as essential powder components, as a substrate, and forming a hard coating layer on the substrate by vapor deposition, in which a Co enrichment surface region is formed in a substrate surface, Co content in the Co enrichment surface region satisfies to be between 1.30 and 2.10 (mass ratio) of Co content in cemented carbide.




r

Roughing end mill and insert for a roughing end mill

A roughing end mill comprises an end mill body and plural inserts which are placed on an outer circumference of the end mill body with a predetermined distance apart from each other in the axial direction of the end mill body, wherein the plural inserts form plural insert rows which are provided in a circumferential direction of the end mill body, where the inserts are offset in the axial direction from each other between the different insert rows which are adjacent in the circumferential direction. The inserts have waveform cutting edges which face towards an outer circumferential side of the end mill body. One insert of one insert row and an insert of another insert row are positioned such that the waveform cutting edges of each of these inserts make up a waveform cutting edge row whose phase is continuous on a rotation trajectory around the axis.




r

Cutting insert, cutting body and clamping mechanism of a cutting tool assembly for chip removal

A cutting insert (14) is formed with an insert aperture (32) opening out to insert top and bottom surfaces (14A, 14B) of the cutting insert (14). In a plan view of the insert top surface (14A), the cutting insert (14) and the insert aperture (32) both have oblong shapes which are elongated along a common insert longitudinal axis (AIL). The aperture (32) includes first and second side surfaces (32A1, 32A2) which each extend along the insert longitudinal axis (AIL), and aperture first and second end surfaces (32B1, 32B2) which each extend transverse relative to the insert longitudinal axis (AIL). At least one of the aperture first and second end surfaces (32B1, 32B2) is formed with a clamping lip (32C1, 32C2).




r

Cutting insert having curved ramps for insertion into a tool holder, cutting tool and method of assembly

A cutting tool used for grooving and turning operations where a cutting insert is resiliently securable in a holder blade. The cutting insert includes an insert central lower surface located between, and recessed with respect to, two insert lower component surfaces, each having an insert lower abutment surface. At least one of the two insert lower component surfaces includes an insert inner curved ramp extending from its insert lower abutment surface to the adjacent insert lower intermediate surface and at least the other of the two insert lower component surfaces includes an insert outer curved ramp extending from its insert lower abutment surface to an adjacent end surface.




r

Indexable, double-sided cutting insert and cutting tool including such an insert

A cutting insert includes a first surface having a first rake surface, a second surface having a second rake surface, a central axis of the insert extending between the first and second surfaces, four side surfaces extending between the first surface and the second surface, and four cutting edges. Each cutting edge has a first cutting edge component and a second cutting edge component and being associated with a respective one of the first and second surfaces and with two respective ones of the side surfaces. The first rake surface is identical to the second rake surface and the first rake surface and the second rake surface are oriented at a 90° angle to each other about the central axis of the insert.