ia Adapting the Social Norms Exploration Tool in the Democratic Republic of the Congo to Identify Social Norms for Behavior Change By ghspjournal.org Published On :: 2024-10-29T12:28:39-07:00 ABSTRACTIn the Democratic Republic of the Congo (DRC), male engagement, social norms, and social networks mitigate family planning behavior. We discuss the adaptation of the Social Norms Exploration Tool (SNET), which identifies relevant social norms and community members upholding these norms, to inform the development of family planning interventions in the DRC. The SNET provides activity tools and templates to guide users through the following steps: (1) plan and prepare, (2) identify reference groups, (3) explore social norms, (4) analyze results, and (5) apply findings.The SNET approach resulted in discussion of social norms, particularly around birth spacing and gender norms framing the man as the decision-maker. However, despite applying a methodology specifically designed to identify social norms, other factors limiting use of contraceptive methods were identified in the process, including lack of education, rumors, and misconceptions. Adaptations were needed to include the full range of reference groups due to narrow phrasing of primary questions, and some of the participatory methods were overly complicated. Feedback from experienced data collectors suggested that the social norms framework is not intuitive, is difficult to apply correctly, and may require that data collectors have a stronger foundation in the relevant concepts to produce valid and actionable results.Although the SNET provides language for discussing normative factors and techniques to identify reference groups and social norms, modifications to the implementation process are recommended when adapting the tool for research. Full Article
ia A Cosmopolitan Argument for Temporary “Diagonal” Short-Term Surgical Missions as a Component of Surgical Systems Strengthening By ghspjournal.org Published On :: 2024-10-29T12:28:39-07:00 Full Article
ia Innovations in Providing HIV Index Testing Services: A Retrospective Evaluation of Partner Elicitation Models in Southern Nigeria By ghspjournal.org Published On :: 2024-10-29T12:28:39-07:00 ABSTRACTBackground: This analysis aimed to evaluate the effectiveness of eliciting sexual partners from HIV-positive clients using the elicitation box model (where an HIV-positive index can report sexual contacts on paper and insert in a box for a health care provider to contact at a later time) compared to the conventional model (in which a health care provider elicits sexual contacts directly from clients) in Akwa Ibom, Southern Nigeria.Methods: Between March 2021 and April 2022, data were collected from index testing registers at 4 health facilities with a high volume of HIV clients currently on treatment in 4 local government areas in Akwa Ibom State. Primary outcome analyzed was the elicitation ratio (number of partners elicited per HIV-index offered index testing services). Secondary outcomes were the index testing acceptance (index HIV-positive clients accepted index testing service), testing coverage (partners tested for HIV from a list of partners elicited from HIV-index accepted index testing services), testing yield (index partners identified HIV positive from index partners HIV-tested), and linkage rate (index partners identified HIV positive and linked to antiretroviral therapy).Results: Of the total 2,705 index clients offered index testing services, 91.9% accepted, with 2,043 and 439 indexes opting for conventional elicitation and elicitation box models, respectively. A total of 3,796 sexual contacts were elicited: 2,546 using the conventional model (elicitation ratio=1:1) and 1,250 using the elicitation box model (elicitation ratio=1:3). Testing coverage was significantly higher in the conventional compared to the elicitation box model (P<.001). However, there was no significant difference in the testing yield (P=.81) and linkage rate using the conventional compared to elicitation box models (P=.13).Conclusion: The implementation of the elicitation box model resulted in an increase in partner elicitation compared to the conventional model. Increasing the testing coverage by implementing the elicitation box model should be considered. Full Article
ia Strengthening Capacity for Tailored Immunization Programs Using Adult Learning Principles: A Case Study from Nigeria By ghspjournal.org Published On :: 2024-10-29T12:28:39-07:00 ABSTRACTIntroduction: Nigeria has the highest number of children who have not received any vaccines in Africa. The training-of-trainers (TOT) model used to train program managers (PMs) and health care workers (HCWs) is ineffective for adult learning and limits immunization programs’ success. We incorporated adult learning principles (ALPs) in designing and delivering TOT for immunization PMs and HCWs to use data to engage communities for tailored immunization strategies.Methods: Our study was implemented in 3 local government areas (LGAs) of the Federal Capital Territory, Nigeria. A training curriculum was developed, integrating ALPs and technical and operational content based on best practices in delivering immunization training and the training needs assessment findings. State PMs (n=10), LGA PMs (n=30), and HCWs (n=42) were trained on the human-centered design for tailoring immunization programs (HCD-TIP) approaches using ALPs. We used interviews and surveys with purposively and conveniently sampled PMs and HCWs, respectively, and observations to assess participants’ satisfaction, knowledge and competence, behavior changes, and results. The interviews were analyzed thematically, and surveys were statistically.Results: There was a high level of satisfaction with the training among LGA PMs (100%), state PMs (91%), and HCWs (85%), with significant knowledge and competence improvements post-training (P<.001). The trained participants conducted 2 HCD sessions with 24 undervaccinated communities and co-designed 24 prototype solutions for testing. Results showed increased coverage of the pentavalent vaccine first dose (54%) and third dose (188%) across 12 participating communities. Improved community colaboration, communication skills, and data-driven approaches were the most cited behavior changes in practice.Conclusion: The application of ALPs in training, use of HCD-TIP approaches and tools, and supportive supervision enhanced PMs’ and HCWs’ capacity for tailored interventions. Countries should consider adopting a holistic approach that focuses on using these approaches in immunization programs to strengthen the health system for equitable vaccine coverage. Full Article
ia Factors Influencing the Central Nervous System (CNS) Distribution of the Ataxia Telangiectasia Mutated and Rad3-Related Inhibitor Elimusertib (BAY1895344): Implications for the Treatment of CNS Tumors [Metabolism, Transport, and Pharmacogenetics] By jpet.aspetjournals.org Published On :: 2024-10-18T07:04:15-07:00 Glioblastoma (GBM) is a disease of the whole brain, with infiltrative tumor cells protected by an intact blood-brain barrier (BBB). GBM has a poor prognosis despite aggressive treatment, in part due to the lack of adequate drug permeability at the BBB. Standard of care GBM therapies include radiation and cytotoxic chemotherapy that lead to DNA damage. Subsequent activation of DNA damage response (DDR) pathways can induce resistance. Various DDR inhibitors, targeting the key regulators of these pathways such as ataxia telangiectasia mutated and Rad3-related (ATR), are being explored as radio- and chemosensitizers. Elimusertib, a novel ATR kinase inhibitor, can prevent repair of damaged DNA, increasing efficacy of DNA-damaging cytotoxic therapies. Robust synergy was observed in vitro when elimusertib was combined with the DNA-damaging agent temozolomide; however, we did not observe improvement with this combination in in vivo efficacy studies in GBM orthotopic tumor-bearing mice. This in vitro–in vivo disconnect was explored to understand factors influencing central nervous system (CNS) distribution of elimusertib and reasons for lack of efficacy. We observed that elimusertib is rapidly cleared from systemic circulation in mice and would not maintain adequate exposure in the CNS for efficacious combination therapy with temozolomide. CNS distribution of elimusertib is partially limited by P-glycoprotein efflux at the BBB, and high binding to CNS tissues leads to low levels of pharmacologically active (unbound) drug in the brain. Acknowledging the potential for interspecies differences in pharmacokinetics, these data suggest that clinical translation of elimusertib in combination with temozolomide for treatment of GBM may be limited. SIGNIFICANCE STATEMENT This study examined the disconnect between the in vitro synergy and in vivo efficacy of elimusertib/temozolomide combination therapy by exploring systemic and central nervous system (CNS) distributional pharmacokinetics. Results indicate that the lack of improvement in in vivo efficacy in glioblastoma (GBM) patient-derived xenograft (PDX) models could be attributed to inadequate exposure of pharmacologically active drug concentrations in the CNS. These observations can guide further exploration of elimusertib for the treatment of GBM or other CNS tumors. Full Article
ia Proteomic Analysis of Signaling Pathways Modulated by Fatty Acid Binding Protein 5 (FABP5) in Macrophages [Special Section: Cannabinoid Signaling in Human Health and Disease] By jpet.aspetjournals.org Published On :: 2024-10-18T07:04:15-07:00 Although acute inflammation serves essential functions in maintaining tissue homeostasis, chronic inflammation is causally linked to many diseases. Macrophages are a major cell type that orchestrates inflammatory processes. During inflammation, macrophages undergo polarization and activation, thereby mobilizing pro-inflammatory and anti-inflammatory transcriptional programs that regulate ensuing macrophage functions. Fatty acid binding protein 5 (FABP5) is a lipid chaperone highly expressed in macrophages. FABP5 deletion is implicated in driving macrophages toward an anti-inflammatory phenotype, yet signaling pathways regulated by macrophage-FABP5 have not been systematically profiled. We leveraged proteomic and phosphoproteomic approaches to characterize pathways modulated by FABP5 in M1 and M2 polarized bone marrow-derived macrophages (BMDMs). Stable isotope labeling by amino acids-based analysis of M1 and M2 polarized wild-type and FABP5 knockout BMDMs revealed numerous differentially regulated proteins and phosphoproteins. FABP5 deletion impacted downstream pathways associated with inflammation, cytokine production, oxidative stress, and kinase activity. Toll-like receptor 2 (TLR2) emerged as a novel target of FABP5 and pharmacological FABP5 inhibition blunted TLR2-mediated activation of downstream pathways, ascribing a novel role for FABP5 in TLR2 signaling. This study represents a comprehensive characterization of the impact of FABP5 deletion on the proteomic and phosphoproteomic landscape of M1 and M2 polarized BMDMs. Loss of FABP5 altered pathways implicated in inflammatory responses, macrophage function, and TLR2 signaling. This work provides a foundation for future studies seeking to investigate the therapeutic potential of FABP5 inhibition in pathophysiological states resulting from dysregulated inflammatory signaling. SIGNIFICANCE STATEMENT This research offers a comprehensive analysis of fatty acid binding protein 5 (FABP5) in macrophages during inflammatory response. The authors employed quantitative proteomic and phosphoproteomic approaches to investigate this utilizing bone marrow-derived macrophages that were M1 and M2 polarized using lipopolysaccharide with interferon and interleukin-4, respectively. This revealed multiple pathways related to inflammation that were differentially regulated due to the absence of FABP5. These findings underscore the potential therapeutic significance of macrophage-FABP5 as a candidate for addressing inflammatory-related diseases. Full Article
ia Regulation of Cannabinoid and Opioid Receptor Levels by Endogenous and Pharmacological Chaperones [Special Section: Cannabinoid Signaling in Human Health and Disease] By jpet.aspetjournals.org Published On :: 2024-10-18T07:04:15-07:00 Cannabinoid and opioid receptor activities can be modulated by a variety of post-translational mechanisms including the formation of interacting complexes. This study examines the involvement of endogenous and exogenous chaperones in modulating the abundance and activity of cannabinoid CB1 receptor (CB1R), opioid receptor (DOR), and CB1R-DOR interacting complexes. Focusing on endogenous protein chaperones, namely receptor transporter proteins (RTPs), we examined relative mRNA expression in the mouse spinal cord and found RTP4 to be expressed at higher levels compared with other RTPs. Next, we assessed the effect of RTP4 on receptor abundance by manipulating RTP4 expression in cell lines. Overexpression of RTP4 causes an increase and knock-down causes a decrease in the levels of CB1R, DOR, and CB1R-DOR interacting complexes; this is accompanied by parallel changes in signaling. The ability of small molecule lipophilic ligands to function as exogenous chaperones was examined using receptor-selective antagonists. Long-term treatment leads to increases in receptor abundance and activity with no changes in mRNA supporting a role as pharmacological chaperones. Finally, the effect of cannabidiol (CBD), a small molecule ligand and a major active component of cannabis, on receptor abundance and activity in mice was examined. We find that CBD administration leads to increases in receptor abundance and activity in mouse spinal cord. Together, these results highlight a role for chaperones (proteins and small molecules) in modulating levels and activity of CB1R, DOR, and their interacting complexes potentially through mechanisms including receptor maturation and trafficking. SIGNIFICANCE STATEMENT This study highlights a role for chaperones (endogenous and small membrane-permeable molecules) in modulating levels of cannabinoid CB1 receptor, delta opioid receptor, and their interacting complexes. These chaperones could be developed as therapeutics for pathologies involving these receptors. Full Article
ia Evaluating the Abuse Potential of Lenabasum, a Selective Cannabinoid Receptor 2 Agonist [Special Section: Cannabinoid Signaling in Human Health and Disease] By jpet.aspetjournals.org Published On :: 2024-10-18T07:04:15-07:00 Endocannabinoids, which are present throughout the central nervous system (CNS), can activate cannabinoid receptors 1 and 2 (CB1 and CB2). CB1 and CB2 agonists exhibit broad anti-inflammatory properties, suggesting their potential to treat inflammatory diseases. However, careful evaluation of abuse potential is necessary. This study evaluated the abuse potential of lenabasum, a selective CB2 receptor agonist in participants (n = 56) endorsing recreational cannabis use. Three doses of lenabasum (20, 60, and 120 mg) were compared with placebo and nabilone (3 and 6 mg). The primary endpoint was the peak effect (Emax) on a bipolar Drug Liking visual analog scale (VAS). Secondary VAS and pharmacokinetic (PK) endpoints and adverse events were assessed. Lenabasum was safe and well tolerated. Compared with placebo, a 20-mg dose of lenabasum did not increase ratings of Drug Liking and had no distinguishable effect on other VAS endpoints. Dose-dependent increases in ratings of Drug Liking were observed with 60 and 120 mg lenabasum. Drug Liking and all other VAS outcomes were greatest for nabilone 3 mg and 6 mg, a medication currently approved by the US Food and Drug Administration (FDA). At a target therapeutic dose (20 mg), lenabasum did not elicit subjective ratings of Drug Liking. However, supratherapeutic doses of lenabasum (60 and 120 mg) did elicit subjective ratings of Drug Liking compared with placebo. Although both doses of lenabasum were associated with lower ratings of Drug Liking compared with 3 mg and 6 mg nabilone, lenabasum does have abuse potential and should be used cautiously in clinical settings. SIGNIFICANCE STATEMENT This work provides evidence that in people with a history of recreational cannabis use, lenabasum was safe and well tolerated, although it did demonstrate abuse potential. This work supports further development of lenabasum for potential therapeutic indications. Full Article
ia Chronic Administration of Cannabinoid Agonists ACEA, AM1241, and CP55,940 Induce Sex-Specific Differences in Tolerance and Sex Hormone Changes in a Chemotherapy-Induced Peripheral Neuropathy [Special Section: Cannabinoid Signaling in Human Health and Dise By jpet.aspetjournals.org Published On :: 2024-10-18T07:04:15-07:00 Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of chemotherapy treatment, routinely manifesting as increased pain sensitivity (allodynia) in distal extremities. Despite its prevalence, effective treatment options are limited. Cannabinoids are increasingly being evaluated for their ability to treat chronic pain conditions, including CIPN. While previous studies have revealed sex differences in cannabinoid-mediated antinociception in acute and chronic pain models, there is a paucity of studies addressing potential sex differences in the response of CIPN to cannabinoid treatment. Therefore, we evaluated the long-term antiallodynic efficacy of cannabinoid receptor type 1 (CB1)-selective, cannabinoid receptor type 2 (CB2)-selective, and CB1/CB2 mixed agonists in the cisplatin CIPN model, using both male and female mice. CB1 selective agonism was observed to have sex differences in the development of tolerance to antiallodynic effects, with females developing tolerance more rapidly than males, while the antiallodynic effects of selective CB2 agonism lacked tolerance development. Compound-specific changes to the female estrous cycle and female plasma estradiol levels were noted, with CB1 selective agonism decreasing plasma estradiol while CB2 selective agonism increased plasma estradiol. Chronic administration of a mixed CB1/CB2 agonist resulted in increased mRNA expression of proinflammatory cytokines and endocannabinoid regulatory enzymes in female spinal cord tissue. Ovarian tissue was noted to have proinflammatory cytokine mRNA expression following administration of a CB2 acting compound while selective CB1 agonism resulted in decreased proinflammatory cytokines and endocannabinoid regulatory enzymes in testes. These results support the need for further investigation into the role of sex and sex hormones signaling in pain and cannabinoid-mediated antinociceptive effects. SIGNIFICANCE STATEMENT CIPN is a common side effect of chemotherapy. We have found that both CB1 and CB2 receptor agonism produce antinociceptive effects in a cisplatin CIPN model. We observed that tolerance to CB1-mediated antinociception developed faster in females and did not develop for CB2-mediated antinociception. Additionally, we found contrasting roles for CB1/CB2 receptors in the regulation of plasma estradiol in females, with CB1 agonism attenuating estradiol and CB2 agonism enhancing estradiol. These findings support the exploration of cannabinoid agonists for CIPN. Full Article
ia Cannabinoid 2 Receptor Activation Protects against Diabetic Cardiomyopathy through Inhibition of AGE/RAGE-Induced Oxidative Stress, Fibrosis, and Inflammasome Activation [Special Section: Cannabinoid Signaling in Human Health and Disease] By jpet.aspetjournals.org Published On :: 2024-10-18T07:04:15-07:00 Oxidative stress, fibrosis, and inflammasome activation from advanced glycation end product (AGE)–receptor of advanced glycation end product (RAGE) interaction contribute to diabetic cardiomyopathy (DCM) formation and progression. Our study revealed the impact of β-caryophyllene (BCP) on activating cannabinoid type 2 receptors (CB2Rs) against diabetic complication, mainly cardiomyopathy and investigated the underlying cell signaling pathways in mice. The murine model of DCM was developed by feeding a high-fat diet with streptozotocin injections. After the development of diabetes, the animals received a 12-week oral BCP treatment at a dose of 50 mg/kg/body weight. BCP treatment showed significant improvement in glucose tolerance and insulin resistance and enhanced serum insulin levels in diabetic animals. BCP treatment effectively reversed the heart remodeling and restored the phosphorylated troponin I and sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a expression. Ultrastructural examination showed reduced myocardial cell injury in DCM mice treated with BCP. The preserved myocytes were found to be associated with reduced expression of AGE/RAGE in DCM mice hearts. BCP treatment mitigated oxidative stress by inhibiting expression of NADPH oxidase 4 and activating phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/nuclear factor erythroid 2–related factor 2 (Nrf2) signaling. Also, BCP suppressed cardiac fibrosis and endothelial-to-mesenchymal transition in DCM mice by inhibiting transforming growth factor β (TGF-β)/suppressor of mothers against decapentaplegic (Smad) signaling. Further, BCP treatment suppressed nucleotide-binding domain, leucine-rich–containing family, pyrin domain–containing-3 (NLRP3) inflammasome activation in DCM mice and alleviated cellular injury to the pancreatic tissues evidenced by significant elevation of the number of insulin-positive cells. To demonstrate a CB2R-dependent mechanism of BCP, another group of DCM mice were pretreated with AM630, a CB2R antagonist. AM630 was observed to abrogate the beneficial effects of BCP in DCM mice. Taken together, BCP demonstrated the potential to protect the myocardium and pancreas of DCM mice mediating CB2R-dependent mechanisms. SIGNIFICANCE STATEMENT BCP, a CB2R agonist, shows protection against DCM. BCP attenuates oxidative stress, inflammation, and fibrosis in DCM via activating CB2Rs. BCP mediating CB2R activation favorably modulates AGE/RAGE, PI3K/AKT/Nrf2β and TGF-β/Smad and (NLRP3) inflammasome in diabetic cardiomyopathy. Full Article
ia KLS-13019, a Novel Structural Analogue of Cannabidiol and GPR55 Receptor Antagonist, Prevents and Reverses Chemotherapy-Induced Peripheral Neuropathy in Rats [Special Section: Cannabinoid Signaling in Human Health and Disease] By jpet.aspetjournals.org Published On :: 2024-10-18T07:04:15-07:00 Neuropathic pain is a form of chronic pain that develops because of damage to the nervous system. Treatment of neuropathic pain is often incompletely effective, and most available therapeutics have only moderate efficacy and present side effects that limit their use. Opioids are commonly prescribed for the management of neuropathic pain despite equivocal results in clinical studies and significant abuse potential. Thus, neuropathic pain represents an area of critical unmet medical need, and novel classes of therapeutics with improved efficacy and safety profiles are urgently needed. The cannabidiol structural analog and novel antagonist of GPR55, KLS-13019, was screened in rat models of neuropathic pain. Tactile sensitivity associated with chemotherapy exposure was induced in rats with once-daily 1-mg/kg paclitaxel injections for 4 days or 5 mg/kg oxaliplatin every third day for 1 week. Rats were then administered KLS-13019 or comparator drugs on day 7 in an acute dosing paradigm or days 7–10 in a chronic dosing paradigm, and mechanical or cold allodynia was assessed. Allodynia was reversed in a dose-dependent manner in the rats treated with KLS-13019, with the highest dose reverting the response to prepaclitaxel injection baseline levels with both intraperitoneal and oral administration after acute dosing. In the chronic dosing paradigm, four consecutive doses of KLS-13019 completely reversed allodynia for the duration of the phenotype in control animals. Additionally, coadministration of KLS-13019 with paclitaxel prevented the allodynic phenotype from developing. Together, these data suggest that KLS-13019 represents a potential new drug for the treatment of neuropathic pain. SIGNIFICANCE STATEMENT Chemotherapy-induced peripheral neuropathy (CIPN) is a common, debilitating side effect of cancer treatment with no known cure. The GPR55 antagonist KLS-13019 represents a novel class of drug for this condition that is a potent, durable inhibitor of allodynia associated with CIPN in rats in both prevention and reversal-dosing paradigms. This novel therapeutic approach addresses a critical area of unmet medical need. Full Article
ia The Minor Phytocannabinoid Delta-8-Tetrahydrocannabinol Attenuates Collagen-Induced Arthritic Inflammation and Pain-Depressed Behaviors [Special Section: Cannabinoid Signaling in Human Health and Disease] By jpet.aspetjournals.org Published On :: 2024-10-18T07:04:15-07:00 Patients with arthritis report using cannabis for pain management, and the major cannabinoid delta-9-tetrahydrocannabinol (9-THC) has anti-inflammatory properties, yet the effects of minor cannabinoids on arthritis are largely unknown. The goal of the present study was to determine the antiarthritic potential of the minor cannabinoid delta-8-tetrahydrocannabinol (8-THC) using the collagen-induced arthritis (CIA) mouse model. Adult male DBA/1J mice were immunized and boosted 21 days later with an emulsion of collagen and complete Freund’s adjuvant. Beginning on the day of the booster, mice were administered twice-daily injections of 8-THC (3 or 30 mg/kg), the steroid dexamethasone (2 mg/kg), or vehicle for two weeks. Dorsal-ventral paw thickness and qualitative measures of arthritis were recorded daily, and latency to fall from an inverted grid was measured on alternating days, to determine arthritis severity and functional impairment. On the final day of testing, spontaneous wire-climbing behavior and temperature preference in a thermal gradient ring were measured to assess CIA-depressed behavior. The 8-THC treatment (30 mg/kg) reduced paw swelling and qualitative signs of arthritis. 8-THC also blocked CIA-depressed climbing and CIA-induced preference for a heated floor without producing locomotor effects but did not affect latency to fall from a wire grid. In alignment with the morphologic and behavioral assessments in vivo, histology revealed that 8-THC reduced synovial inflammation, proteoglycan loss and cartilage and bone erosion in the foot joints in a dose-dependent manner. Together, these findings suggest that 8-THC not only blocked morphologic changes but also prevented functional loss caused by collagen-induced arthritis. SIGNIFICANCE STATEMENT Despite increasing use of cannabis products, the potential effects of minor cannabinoids are largely unknown. Here, the minor cannabinoid delta-8-tetrahydrocannabinol blocked the development of experimentally induced arthritis by preventing both pathophysiological as well as functional effects of the disease model. These data support the development of novel cannabinoid treatments for inflammatory arthritis. Full Article
ia Select Minor Cannabinoids from Cannabis sativa Are Cannabimimetic and Antinociceptive in a Mouse Model of Chronic Neuropathic Pain [Special Section: Cannabinoid Signaling in Human Health and Disease] By jpet.aspetjournals.org Published On :: 2024-10-18T07:04:15-07:00 Chronic pain conditions affect nearly 20% of the population in the United States. Current medical interventions, such as opioid drugs, are effective at relieving pain but are accompanied by many undesirable side effects. This is one reason increased numbers of chronic pain patients have been turning to Cannabis for pain management. Cannabis contains many bioactive chemical compounds; however, current research looking into lesser-studied minor cannabinoids in Cannabis lacks uniformity between experimental groups and/or excludes female mice from investigation. This makes it challenging to draw conclusions between experiments done with different minor cannabinoid compounds between laboratories or parse out potential sex differences that could be present. We chose five minor cannabinoids found in lower quantities within Cannabis: cannabinol (CBN), cannabidivarin (CBDV), cannabigerol (CBG), 8-tetrahydrocannabinol (8-THC), and 9-tetrahydrocannabivarin (THCV). These compounds were then tested for their cannabimimetic and pain-relieving behaviors in a cannabinoid tetrad assay and a chemotherapy-induced peripheral neuropathy (CIPN) pain model in male and female CD-1 mice. We found that the minor cannabinoids we tested differed in the cannabimimetic behaviors evoked, as well as the extent. We found that CBN, CBG, and high-dose 8-THC evoked some tetrad behaviors in both sexes, while THCV and low-dose 8-THC exhibited cannabimimetic tetrad behaviors only in females. Only CBN efficaciously relieved CIPN pain, which contrasts with reports from other researchers. Together these findings provide further clarity to the pharmacology of minor cannabinoids and suggest further investigation into their mechanism and therapeutic potential. SIGNIFICANCE STATEMENT Minor cannabinoids are poorly studied ligands present in lower levels in Cannabis than cannabinoids like THC. In this study, we evaluated five minor cannabinoids (CBN, CBDV, CBG, THCV, and 8-THC) for their cannabimimetic and analgesic effects in mice. We found that four of the five minor cannabinoids showed cannabimimetic activity, while one was efficacious in relieving chronic neuropathic pain. This work is important in further evaluating the activity of these drugs, which are seeing wider public use with marijuana legalization. Full Article
ia The Potential of Cannabichromene (CBC) as a Therapeutic Agent [Special Section: Cannabinoid Signaling in Human Health and Disease-Minireview] By jpet.aspetjournals.org Published On :: 2024-10-18T07:04:15-07:00 There is a growing interest in the use of medicinal plants to treat a variety of diseases, and one of the most commonly used medicinal plants globally is Cannabis sativa. The two most abundant cannabinoids (9-tetrahydrocannabinol and cannabidiol) have been governmentally approved to treat selected medical conditions; however, the plant produces over 100 cannabinoids, including cannabichromene (CBC). Although the cannabinoids share a common precursor molecule, cannabigerol, they are structurally and pharmacologically unique. These differences may engender differing therapeutic potentials. In this review, we will examine what is currently known about CBC with regards to pharmacodynamics, pharmacokinetics, and receptor profile. We will also discuss the therapeutic areas that have been examined for this cannabinoid, notably antinociceptive, antibacterial, and anti-seizure activities. Finally, we will discuss areas where new research is needed and potential novel medicinal applications for CBC. SIGNIFICANCE STATEMENT Cannabichromene (CBC) has been suggested to have disparate therapeutic benefits such as anti-inflammatory, anticonvulsant, antibacterial, and antinociceptive effects. Most of the focus on the medical benefits of cannabinoids has been focused on 9-tetrahydrocannabinol and cannabidiol. The preliminary studies on CBC indicate that this phytocannabinoid may have unique therapeutic potential that warrants further investigation. Following easier access to hemp, CBC products are commercially available over-the-counter and are being widely utilized with little or no evidence of their safety or efficacy. Full Article
ia The Intoxication Equivalency of 11-Hydroxy-{Delta}9-Tetrahydrocannabinol Relative to {Delta}9-Tetrahydrocannabinol [Special Section: Cannabinoid Signaling in Human Health and Disease] By jpet.aspetjournals.org Published On :: 2024-10-18T07:04:15-07:00 9-Tetrahydrocannabinol (THC) is a psychoactive phytocannabinoid found in the Cannabis sativa plant. THC is primarily metabolized into 11-hydroxy-9-tetrahydrocannabinol (11-OH-THC) and 11-nor-9-carboxy-9-tetrahydrocannabinol (COOH-THC), which may themselves be psychoactive. There is very little research-based evidence concerning the pharmacokinetics and pharmacodynamics of 11-OH-THC as an individual compound. Male C57BL/6 mice were treated with THC or 11-OH-THC via intraperitoneal injection, tail vein intravenous injection, or oral gavage, and whole-blood compound levels were measured to determine pharmacokinetic parameters [Cmax, time to Cmax (Tmax), elimination half-life, area under the curve, apparent volume of distribution, systemic clearance, terminal rate constant, and absolute bioavailability] while also monitoring changes in catalepsy, body temperature, and nociception. 11-OH-THC achieved a Tmax at 30 minutes for all routes of administration. The maximum concentration at 30 minutes was not different between intravenous and intraperitoneal routes, but the oral gavage Cmax was significantly lower. THC had a 10-minute time to the maximum concentration, which was the first blood collection time point, for intravenous and intraperitoneal and 60 minutes for oral gavage, with a lower Cmax for intraperitoneal and oral gavage compared with intravenous. When accounting for circulating compound levels and ED50 responses, these data suggest that 11-OH-THC was 153% as active as THC in the tail-flick test of nociception and 78% as active as THC for catalepsy. Therefore, 11-OH-THC displayed equal or greater activity than the parent compound THC, even when accounting for pharmacokinetic differences. Thus, the THC metabolite 11-OH-THC likely plays a critical role in the bioactivity of cannabis; understanding its activity when administered directly will aid in the interpretation of future animal and human studies. SIGNIFICANCE STATEMENT This study establishes that the primary metabolite of THC, 11-OH-THC, displays equal or greater activity than THC in a mouse model of cannabinoid activity when directly administered and even when accounting for route of administration, sex, pharmacokinetic, and pharmacodynamic differences. These data provide critical insight into the bioactivity of THC metabolites that will inform the interpretation of future in vivo cannabinoid research and represent a model for how THC consumption and metabolism may affect cannabis use in humans. Full Article
ia Sex Differences in the Neural and Behavioral Effects of Acute High-Dose Edible Cannabis Consumption in Rats [Special Section: Cannabinoid Signaling in Human Health and Disease] By jpet.aspetjournals.org Published On :: 2024-10-18T07:04:15-07:00 The consumption of 9-tetrahydrocannabinol (THC)- or cannabis-containing edibles has increased in recent years; however, the behavioral and neural circuit effects of such consumption remain unknown, especially in the context of ingestion of higher doses resulting in cannabis intoxication. We examined the neural and behavioral effects of acute high-dose edible cannabis consumption (AHDECC). Sprague-Dawley rats (six males, seven females) were implanted with electrodes in the prefrontal cortex (PFC), dorsal hippocampus (dHipp), cingulate cortex (Cg), and nucleus accumbens (NAc). Rats were provided access to a mixture of Nutella (6 g/kg) and THC-containing cannabis oil (20 mg/kg) for 10 minutes, during which they voluntarily consumed all of the provided Nutella and THC mixture. Cannabis tetrad and neural oscillations were examined 2, 4, 8, and 24 hours after exposure. In another cohort (16 males, 15 females), we examined the effects of AHDECC on learning and prepulse inhibition and serum and brain THC and 11-hydroxy-THC concentrations. AHDECC resulted in higher brain and serum THC and 11-hydroxy-THC levels in female rats over 24 hours. AHDECC also produced: 1) Cg, dHipp, and NAc gamma power suppression, with the suppression being greater in female rats, in a time-dependent manner; 2) hypolocomotion, hypothermia, and antinociception in a time-dependent manner; and 3) learning and prepulse inhibition impairments. Additionally, most neural activity and behavior changes appear 2 hours after ingestion, suggesting that interventions around this time might be effective in reversing/reducing the effects of AHDECC. SIGNIFICANCE STATEMENT The effects of high-dose edible cannabis on behavior and neural circuitry are poorly understood. We found that the effects of acute high-dose edible cannabis consumption (AHDECC), which include decreased gamma power, hypothermia, hypolocomotion, analgesia, and learning and information processing impairments, are time and sex dependent. Moreover, these effects begin 2 hours after AHDECC and last for at least 24 hours, suggesting that treatments should target this time window in order to be effective.: Full Article
ia {Delta}9-Tetrahydrocannabinol Alleviates Hyperalgesia in a Humanized Mouse Model of Sickle Cell Disease [Special Section: Cannabinoid Signaling in Human Health and Disease] By jpet.aspetjournals.org Published On :: 2024-10-18T07:04:15-07:00 People with sickle cell disease (SCD) often experience chronic pain as well as unpredictable episodes of acute pain, which significantly affects their quality of life and life expectancy. Current treatment strategies for SCD-associated pain primarily rely on opioid analgesics, which have limited efficacy and cause serious adverse effects. Cannabis has emerged as a potential alternative, yet its efficacy remains uncertain. In this study, we investigated the antinociceptive effects of 9-tetrahydrocannabinol (THC), cannabis’ intoxicating constituent, in male HbSS mice, which express >99% human sickle hemoglobin, and male HbAA mice, which express normal human hemoglobin A, as a control. Acute THC administration (0.1–3 mg/kg–1, i.p.) dose-dependently reduced mechanical and cold hypersensitivity in human sickle hemoglobin (HbSS) but not human normal hemoglobin A (HbAA) mice. In the tail-flick assay, THC (1 and 3 mg/kg–1, i.p.) produced substantial antinociceptive effects in HbSS mice. By contrast, THC (1 mg/kg–1, i.p.) did not alter anxiety-like behavior (elevated plus maze) or long-term memory (24-hour novel object recognition). Subchronic THC treatment (1 and 3 mg/kg–1, i.p.) provided sustained relief of mechanical hypersensitivity but led to tolerance in cold hypersensitivity in HbSS mice. Together, the findings identify THC as a possible therapeutic option for the management of chronic pain in SCD. Further research is warranted to elucidate its mechanism of action and possible interaction with other cannabis constituents. SIGNIFICANCE STATEMENT The study explores 9-tetrahydrocannabinol (THC)’s efficacy in alleviating pain in sickle cell disease (SCD) using a humanized mouse model. Findings indicate that acute THC administration reduces mechanical and cold hypersensitivity in SCD mice without impacting emotional and cognitive dysfunction. Subchronic THC treatment offers sustained relief of mechanical hypersensitivity but leads to cold hypersensitivity tolerance. These results offer insights into THC's potential as an alternative pain management option in SCD, highlighting both its benefits and limitations. Full Article
ia Analgesic Properties of Next-Generation Modulators of Endocannabinoid Signaling: Leveraging Modern Tools for the Development of Novel Therapeutics [Special Section: Cannabinoid Signaling in Human Health and Disease-Minireview] By jpet.aspetjournals.org Published On :: 2024-10-18T07:04:15-07:00 Targeting the endocannabinoid (eCB) signaling system for pain relief is an important treatment option that is only now beginning to be mechanistically explored. In this review, we focus on two recently appreciated cannabinoid-based targeting strategies, treatments with cannabidiol (CBD) and α/β-hydrolase domain containing 6 (ABHD6) inhibitors, which have the exciting potential to produce pain relief through distinct mechanisms of action and without intoxication. We review evidence on plant-derived cannabinoids for pain, with an emphasis on CBD and its multiple molecular targets expressed in pain pathways. We also discuss the function of eCB signaling in regulating pain responses and the therapeutic promises of inhibitors targeting ABHD6, a 2-arachidonoylglycerol (2-AG)-hydrolyzing enzyme. Finally, we discuss how the novel cannabinoid biosensor GRABeCB2.0 may be leveraged to enable the discovery of targets modulated by cannabinoids at a circuit-specific level. SIGNIFICANCE STATEMENT Cannabis has been used by humans as an effective medicine for millennia, including for pain management. Recent evidence emphasizes the therapeutic potential of compounds that modulate endocannabinoid signaling. Specifically, cannabidiol and inhibitors of the enzyme ABHD6 represent promising strategies to achieve pain relief by modulating endocannabinoid signaling in pain pathways via distinct, nonintoxicating mechanisms of action. Full Article
ia The National Center for Complementary and Integrative Health: Priorities for Cannabis and Cannabinoid Research [Special Section: Cannabinoid Signaling in Human Health and Disease-Commentary] By jpet.aspetjournals.org Published On :: 2024-10-18T07:04:15-07:00 The National Center for Complementary and Integrative Health (NCCIH), which is part of the US National Institutes of Health (NIH), has a broad interest in studying the biologic activities of natural products, especially those for which compelling evidence from preclinical research suggests biologic activities that may be beneficial to health or have a potential role in disease treatment, as well as products used extensively by the American public. As of 2023, use of cannabis for medical purposes is legal in 38 states and Washington, D.C. Such use continues to climb generally without sufficient knowledge regarding risks and benefits. In keeping with NCCIH’s natural product research priorities and recognizing this gap in knowledge, NCCIH formally launched a research program in 2019 to expand research on the possible benefits for pain management of certain substances found in cannabis: minor cannabinoids and terpenes. This Viewpoint provides additional details and the rationale for this research priority at NCCIH. In addition, NCCIH’s efforts and initiatives to facilitate and coordinate an NIH research agenda focused on cannabis and cannabinoid research are described. SIGNIFICANCE STATEMENT Use of cannabis for purported medical purposes continues to increase despite insufficient knowledge regarding risks and benefits. Research is needed to help health professionals and patients make knowledgeable decisions about using cannabis and cannabinoids for medical purposes. The National Center for Complementary and Integrative Health, along with other NIH Institutes, Centers, and Offices, is expanding study on the safety, efficacy, and harms of cannabis—a complex mixture of phytochemicals that needs to be studied alone and in combination. Full Article
ia Cannabis and Cannabinoid Signaling: Research Gaps and Opportunities [Special Section: Cannabinoid Signaling in Human Health and Disease-Commentary] By jpet.aspetjournals.org Published On :: 2024-10-18T07:04:15-07:00 Cannabis and its products have been used for centuries for both medicinal and recreational purposes. The recent widespread legalization of cannabis has vastly expanded its use in the United States across all demographics except for adolescents. Meanwhile, decades of research have advanced our knowledge of cannabis pharmacology and particularly of the endocannabinoid system with which the components of cannabis interact. This research has revealed multiple targets and approaches for manipulating the system for therapeutic use and to ameliorate cannabis toxicity or cannabis use disorder. Research has also led to new questions that underscore the potential risks of its widespread use, particularly the enduring consequences of exposure during critical windows of brain development or for consumption of large daily doses of cannabis with high content 9-tetrahydrocannabinol. This article highlights current neuroscience research on cannabis that has shed light on therapeutic opportunities and potential adverse consequences of misuse and points to gaps in knowledge that can guide future research. SIGNIFICANCE STATEMENT Cannabis use has escalated with its increased availability. Here, the authors highlight the challenges of cannabis research and the gaps in our knowledge of cannabis pharmacology and of the endocannabinoid system that it targets. Future research that addresses these gaps is needed so that the endocannabinoid system can be leveraged for safe and effective use. Full Article
ia Special Section on Cannabinoid Signaling in Human Health and Disease--Editorial [Special Section on Cannabinoid Signaling in Human Health and Disease-Editorial] By jpet.aspetjournals.org Published On :: 2024-10-18T07:04:15-07:00 Full Article
ia Validation of an Artificial Intelligence-Based Prediction Model Using 5 External PET/CT Datasets of Diffuse Large B-Cell Lymphoma By jnm.snmjournals.org Published On :: 2024-11-01T04:25:31-07:00 The aim of this study was to validate a previously developed deep learning model in 5 independent clinical trials. The predictive performance of this model was compared with the international prognostic index (IPI) and 2 models incorporating radiomic PET/CT features (clinical PET and PET models). Methods: In total, 1,132 diffuse large B-cell lymphoma patients were included: 296 for training and 836 for external validation. The primary outcome was 2-y time to progression. The deep learning model was trained on maximum-intensity projections from PET/CT scans. The clinical PET model included metabolic tumor volume, maximum distance from the bulkiest lesion to another lesion, SUVpeak, age, and performance status. The PET model included metabolic tumor volume, maximum distance from the bulkiest lesion to another lesion, and SUVpeak. Model performance was assessed using the area under the curve (AUC) and Kaplan–Meier curves. Results: The IPI yielded an AUC of 0.60 on all external data. The deep learning model yielded a significantly higher AUC of 0.66 (P < 0.01). For each individual clinical trial, the model was consistently better than IPI. Radiomic model AUCs remained higher for all clinical trials. The deep learning and clinical PET models showed equivalent performance (AUC, 0.69; P > 0.05). The PET model yielded the highest AUC of all models (AUC, 0.71; P < 0.05). Conclusion: The deep learning model predicted outcome in all trials with a higher performance than IPI and better survival curve separation. This model can predict treatment outcome in diffuse large B-cell lymphoma without tumor delineation but at the cost of a lower prognostic performance than with radiomics. Full Article
ia The Updated Registry of Fast Myocardial Perfusion Imaging with Next-Generation SPECT (REFINE SPECT 2.0) By jnm.snmjournals.org Published On :: 2024-11-01T04:25:31-07:00 The Registry of Fast Myocardial Perfusion Imaging with Next-Generation SPECT (REFINE SPECT) has been expanded to include more patients and CT attenuation correction imaging. We present the design and initial results from the updated registry. Methods: The updated REFINE SPECT is a multicenter, international registry with clinical data and image files. SPECT images were processed by quantitative software and CT images by deep learning software detecting coronary artery calcium (CAC). Patients were followed for major adverse cardiovascular events (MACEs) (death, myocardial infarction, unstable angina, late revascularization). Results: The registry included scans from 45,252 patients from 13 centers (55.9% male, 64.7 ± 11.8 y). Correlating invasive coronary angiography was available for 3,786 (8.4%) patients. CT attenuation correction imaging was available for 13,405 patients. MACEs occurred in 6,514 (14.4%) patients during a median follow-up of 3.6 y (interquartile range, 2.5–4.8 y). Patients with a stress total perfusion deficit of 5% to less than 10% (unadjusted hazard ratio [HR], 2.42; 95% CI, 2.23–2.62) and a stress total perfusion deficit of at least 10% (unadjusted HR, 3.85; 95% CI, 3.56–4.16) were more likely to experience MACEs. Patients with a deep learning CAC score of 101–400 (unadjusted HR, 3.09; 95% CI, 2.57–3.72) and a CAC of more than 400 (unadjusted HR, 5.17; 95% CI, 4.41–6.05) were at increased risk of MACEs. Conclusion: The REFINE SPECT registry contains a comprehensive set of imaging and clinical variables. It will aid in understanding the value of SPECT myocardial perfusion imaging, leverage hybrid imaging, and facilitate validation of new artificial intelligence tools for improving prediction of adverse outcomes incorporating multimodality imaging. Full Article
ia Correlation of FAPI PET Uptake with Immunohistochemistry in Explanted Lungs from Patients with Advanced Interstitial Lung Disease By jnm.snmjournals.org Published On :: 2024-11-01T04:25:31-07:00 Recent studies have demonstrated promising results of fibroblast activation protein (FAP) inhibitor (FAPI) PET in prognosticating and monitoring interstitial lung diseases (ILDs). As a first step toward successful translation, our primary aim was to validate the FAPI PET uptake through immunohistochemistry in patients with advanced ILD who underwent lung transplantation after a FAPI PET scan. Methods: This is a preliminary analysis of a single-center, open-label, single-arm, prospective exploratory biodistribution study of 68Ga-FAPI-46 PET imaging in patients with ILD (NCT05365802). Patients with ILD confirmed by high-resolution CT and scheduled for lung transplant were included. Tissue samples of explanted lungs were obtained from both the central and peripheral lung parenchyma of each lobe. Additional samples were obtained from areas of the lung corresponding to regions of FAPI PET activity. Immunohistochemical staining was performed with an anti-FAP antibody. Percentages of FAP immunohistochemistry-positive area were measured semiautomatically using QuPath software. SUVs in the areas of pathologic samples were measured on FAPI PET/CT by referencing the gross photomap of the explanted lung. A Spearman correlation coefficient test was used to assess the relationship between FAPI PET uptake and FAP immunohistochemical expression in each specimen. Results: Four patients with advanced ILD who underwent FAPI PET/CT before lung transplantation were included. The types of ILD were idiopathic pulmonary fibrosis (n = 2), rheumatoid arthritis–associated ILD (n = 1), and nonspecific interstitial pneumonia (n = 1). FAPI uptake was visualized mainly in the fibrotic area on CT. Twenty-nine surgical pathology samples from 3 patients were analyzed. FAP staining was predominantly positive in fibroblastic foci. FAPI PET SUVmax and SUVmean showed a positive correlation with the immunohistochemical FAP expression score (SUVmax: r = 0.57, P = 0.001; SUVmean: r = 0.54, P = 0.002). Conclusion: In this analysis conducted in patients who underwent lung transplantation after a FAPI PET scan, FAPI PET uptake was positively correlated with FAP immunohistochemistry. These findings provide a rationale for further investigation of FAPI PET as a potential imaging biomarker for ILD. Full Article
ia Summary: Appropriate Use Criteria for the Use of Nuclear Medicine in Fever of Unknown Origin By jnm.snmjournals.org Published On :: 2024-11-01T04:25:31-07:00 The diagnostic work-up of patients with fever of unknown origin (FUO) begins with a thorough history and physical examination, complete blood count with differential, chest x-ray, urinalysis and culture, electrolyte panel, liver enzymes, erythrocyte sedimentation rate, and C-reactive protein level. Additional imaging procedures, including nuclear medicine tests, are generally used as second-line procedures, with 18F-FDG PET and PET/CT assuming increasingly important roles in the diagnostic work-up. The Society of Nuclear Medicine and Molecular Imaging, the Infectious Diseases Society of America, and the American College of Nuclear Medicine convened an autonomous expert work group to comprehensively review the published literature for nuclear imaging in adults and children with FUO and establish appropriate use criteria (AUC). This process was performed in accordance with the Protecting Access to Medicare Act of 2014, which requires that all referring physicians consult AUC by using a clinical decision support mechanism before ordering advanced diagnostic imaging services. The complete findings and discussions of the work group were published on January 8, 2023, and are available at https://www.snmmi.org/ClinicalPractice/content.aspx?ItemNumber=15666. The AUC in the final document are intended to assist referring health care providers in appropriate use of nuclear medicine imaging procedures in patients with FUO. The work group noted limitations in the current literature on nuclear medicine imaging for FUO, with the need for well-designed prospective multicenter investigations. Consensus findings from published data and expert opinions were used to create recommendations in common clinical scenarios for adults and children. Included in the complete document is a discussion of inflammation of unknown origin (IUO), a recently described entity. In view of the fact that the criteria for FUO and IUO are similar (except for fever > 38.3°C [100.9°F]) and that the most common etiologies of these 2 entities are similar, it is the expert opinion of the work group that the recommendations for nuclear medicine imaging of FUO are also applicable to IUO. These recommendations are included in the full guidance document. This summary reviews rationale, methodology, and main findings and refers the reader to the complete AUC document. Full Article
ia Cardiac Neuroendocrine Tumor Metastases on 68Ga-DOTATATE PET/CT: Identification and Prognostic Significance By jnm.snmjournals.org Published On :: 2024-11-01T04:25:31-07:00 Neuroendocrine tumor (NET) metastases to the heart are found in 1%–4% of NET patients and have been reported primarily in the form of individual cases. We investigated the prevalence, clinical characteristics, imaging features, and outcomes of NET patients with cardiac metastases on 68Ga-DOTATATE PET/CT. Methods: 68Ga-DOTATATE PET/CT of 490 consecutive patients from a single institution were retrospectively reviewed for sites of metastases. The cumulative cardiovascular event rate and overall survival of patients with cardiac NET metastases (CNMs) were compared with those of a control group of metastatic NET patients without cardiac metastases. In patients with CNMs, the cardiac SUVmax with and without normalization to the myocardial background uptake was compared with a separate cohort of 11 patients with active cardiac sarcoidosis who underwent 68Ga-DOTATATE PET/CT for research purposes. Results: In total, 270 patients with metastatic NETs were identified, 9 (3.3%) of whom had CNMs. All 9 patients had grade 1–2 gastroenteropancreatic NETs, most commonly from the small intestine (7 patients). The control group consisted of 140 patients with metastatic grade 1–2 gastroenteropancreatic NETs. On Kaplan–Meier analysis, there was no significant difference in the risk of cardiovascular adverse events (P = 0.91 on log-rank test) or mortality (P = 0.83) between the metastatic NET patients with and without cardiac metastases. The degree of cardiac DOTATATE uptake was significantly higher in CNMs than in patients with cardiac sarcoidosis without overlap, in terms of both cardiac SUVmax (P = 0.027) and SUVmax–to–myocardial background ratio (P = 0.021). Conclusion: Routine 68Ga-DOTATATE PET/CT can be used to identify CNMs in 3% of patients with metastatic NETs. CNMs do not confer added cardiovascular or mortality risk. A distinguishing feature of CNMs is their high degree of DOTATATE uptake compared with focal myocardial inflammation. Full Article
ia Association of Free-to-Total PSA Ratio and 18F-DCFPyL Prostate-Specific Membrane Antigen PET/CT Findings in Patients with Biochemical Recurrence After Radical Prostatectomy: A Prospective Single-Center Study By jnm.snmjournals.org Published On :: 2024-11-01T04:25:31-07:00 In Canada and across the globe, access to PSMA PET/CT is limited and expensive. For patients with biochemical recurrence (BCR) after treatment for prostate cancer, novel strategies are needed to better stratify patients who may or may not benefit from a PSMA PET scan. The role of the free-to-total prostate-specific antigen (PSA) ratio (FPSAR) in posttreatment prostate cancer, specifically in the PSMA PET/CT era, remains unknown. Our aim in this study was to determine the association of FPSAR in patients referred for 18F-DCFPyL PSMA PET/CT in the BCR setting and assess the correlation between FPSAR and 18F-DCFPyL PSMA PET/CT positivity (local recurrence or distant metastases). Methods: This prospective study included 137 patients who were referred for 18F-DCFPyL PSMA PET/CT and had BCR with a total PSA of less than 1 ng/mL after radical prostatectomy (RP) (including adjuvant or salvage radiotherapy). Blood samples were collected on the day of 18F-DCFPyL PSMA PET/CT. FPSAR was categorized as less than 0.10 or as 0.10 or more. A positive 18F-DCFPyL PSMA PET/CT scan was defined by a PROMISE classification lesion score of 2 or 3, irrespective of the site of increased tracer uptake (e.g., prostate, pelvic nodes, bone, or viscera). Results: Overall, 137 blood samples of patients with BCR after RP were analyzed to calculate FPSAR. The median age at 18F-DCFPyL PSMA PET/CT was 68.6 y (interquartile range, 63.0–72.4 y), and the median PSA at 18F-DCFPyL PSMA PET/CT was 0.3 ng/mL (interquartile range, 0.3–0.6 ng/mL). Eighty-six patients (62.8%) had an FPSAR of less than 0.10, whereas 51 patients (37.2%) had an FPSAR of 0.10 or more. An FPSAR of 0.10 or more was identified as an independent predictor of a positive 18F-DCFPyL PSMA PET/CT scan, with an odds ratio of 6.99 (95% CI, 2.96–16.51; P < 0.001). Conclusion: An FPSAR of 0.10 or more after RP independently correlated with increased odds of a positive 18F-DCFPyL PSMA PET/CT scan among BCR post-RP patients. These findings may offer an inexpensive method by which to triage access to 18F-DCFPyL PSMA PET/CT in jurisdictions where availability is not replete. Full Article
ia Initial Experience with [177Lu]Lu-PSMA-617 After Regulatory Approval for Metastatic Castration-Resistant Prostate Cancer: Efficacy, Safety, and Outcome Prediction By jnm.snmjournals.org Published On :: 2024-11-01T04:25:31-07:00 [177Lu]Lu-PSMA-617 was approved by the U.S. Food and Drug Administration for patients with prostate-specific membrane antigen (PSMA)–positive metastatic castration-resistant prostate cancer (mCRPC). Since the time of regulatory approval, however, real-world data have been lacking. This study investigated the efficacy, safety, and outcome predictors of [177Lu]Lu-PSMA-617 at a major U.S. academic center. Methods: Patients with mCRPC who received [177Lu]Lu-PSMA-617 at the Johns Hopkins Hospital outside clinical trials were screened for inclusion. Patients who underwent [177Lu]Lu-PSMA-617 and had available outcome data were included in this study. Outcome data included prostate-specific antigen (PSA) response (≥50% decline), PSA progression-free survival (PFS), and overall survival (OS). Toxicity data were evaluated according to the Common Terminology Criteria for Adverse Events version 5.03. The study tested the association of baseline circulating tumor DNA mutational status in homologous recombination repair, PI3K alteration pathway, and aggressive-variant prostate cancer–associated genes with treatment outcome. Baseline PSMA PET/CT images were analyzed using SelectPSMA, an artificial intelligence algorithm, to predict treatment outcome. Associations with the observed treatment outcome were evaluated. Results: All 76 patients with PSMA-positive mCRPC who received [177Lu]Lu-PSMA-617 met the inclusion criteria. A PSA response was achieved in 30 of 74 (41%) patients. The median PSA PFS was 4.1 mo (95% CI, 2.0–6.2 mo), and the median OS was 13.7 mo (95% CI, 11.3–16.1 mo). Anemia of grade 3 or greater, thrombocytopenia, and neutropenia were observed in 9 (12%), 3 (4%), and 1 (1%), respectively, of 76 patients. Transient xerostomia was observed in 23 (28%) patients. The presence of aggressive-variant prostate cancer–associated genes was associated with a shorter PSA PFS (median, 1.3 vs. 6.3 mo; P = 0.040). No other associations were observed between circulating tumor DNA mutational status and treatment outcomes. Eighteen of 71 (25%) patients classified by SelectPSMA as nonresponders had significantly lower rates of PSA response than patients classified as likely responders (6% vs. 51%; P < 0.001), a shorter PSA PFS (median, 1.3 vs. 6.3 mo; P < 0.001), and a shorter OS (median, 6.3 vs. 14.5 mo; P = 0.046). Conclusion: [177Lu]Lu-PSMA-617 offered in a real-world setting after regulatory approval in the United States demonstrated antitumor activity and a favorable toxicity profile. Artificial-intelligence–based analysis of baseline PSMA PET/CT images may improve patient selection. Validation of these findings on larger cohorts is warranted. Full Article
ia [18F]AlF-NOTA-FAPI-04 PET/CT for Predicting Pathologic Response of Resectable Esophageal Squamous Cell Carcinoma to Neoadjuvant Camrelizumab and Chemotherapy: A Phase II Clinical Trial By jnm.snmjournals.org Published On :: 2024-11-01T04:25:31-07:00 This single-center, single-arm, phase II trial (ChiCTR2100050057) investigated the ability of 18F-labeled fibroblast activation protein inhibitor ([18F]AlF-NOTA-FAPI-04, denoted as 18F-FAPI) PET/CT to predict the response to neoadjuvant camrelizumab plus chemotherapy (nCC) in locally advanced esophageal squamous cell carcinoma (LA-ESCC). Methods: This study included 32 newly diagnosed LA-ESCC participants who underwent 18F-FAPI PET/CT at baseline, of whom 23 also underwent scanning after 2 cycles of nCC. The participants underwent surgery after 2 cycles of nCC. Recorded PET parameters included maximum, peak, and mean SUVs and tumor-to-background ratios (TBRs), metabolic tumor volume, and total lesion FAP expression. PET parameters were compared between patient groups with good and poor pathologic responses, and the predictive performance for treatment response was analyzed. Results: The good and poor response groups each included 16 participants (16/32, 50.0%). On 18F-FAPI PET/CT, the posttreatment SUVs were significantly lower in good responders than in poor responders, whereas the changes in SUVs with treatment were significantly higher (all P < 0.05). SUVmax (area under the curve [AUC], 0.87; P = 0.0026), SUVpeak (AUC, 0.89; P = 0.0017), SUVmean (AUC, 0.88; P = 0.0021), TBRmax (AUC, 0.86; P = 0.0031), and TBRmean (AUC, 0.88; P = 0.0021) after nCC were significant predictors of pathologic response to nCC, with sensitivities of 63.64%–81.82% and specificities of 83.33%–100%. Changes in SUVmax (AUC, 0.81; P = 0.0116), SUVpeak (AUC, 0.82; P = 0.0097), SUVmean (AUC, 0.81; P = 0.0116), and TBRmean (AUC, 0.74; P = 0.0489) also were significant predictors of the pathologic response to nCC, with sensitivities and specificities in similar ranges. Conclusion: 18F-FAPI PET/CT parameters after treatment and their changes from baseline can predict the pathologic response to nCC in LA-ESCC participants. Full Article
ia Reimagining Biologically Adapted Somatostatin Receptor-Targeted Radionuclide Therapy: Perspectives Based on Personal Experience and Observations on Recent Trials By jnm.snmjournals.org Published On :: 2024-11-01T04:25:31-07:00 Full Article
ia Is the Clinical Application of CXCR4 Imaging in the Diagnosis and Management of Primary Aldosteronism Really Happening? By jnm.snmjournals.org Published On :: 2024-11-01T04:25:31-07:00 Full Article
ia Arrhythmias in Nongranulomatous Myocarditis: Is There a Role for PET? By jnm.snmjournals.org Published On :: 2024-11-01T04:25:31-07:00 Full Article
ia Posttranslational Modifications of {alpha}-Synuclein, Their Therapeutic Potential, and Crosstalk in Health and Neurodegenerative Diseases [Review Article] By pharmrev.aspetjournals.org Published On :: 2024-10-16T07:40:25-07:00 α-Synuclein (α-Syn) aggregation in Lewy bodies and Lewy neurites has emerged as a key pathogenetic feature in Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Various factors, including posttranslational modifications (PTMs), can influence the propensity of α-Syn to misfold and aggregate. PTMs are biochemical modifications of a protein that occur during or after translation and are typically mediated by enzymes. PTMs modulate several characteristics of proteins including their structure, activity, localization, and stability. α-Syn undergoes various posttranslational modifications, including phosphorylation, ubiquitination, SUMOylation, acetylation, glycation, O-GlcNAcylation, nitration, oxidation, polyamination, arginylation, and truncation. Different PTMs of a protein can physically interact with one another or work together to influence a particular physiological or pathological feature in a process known as PTMs crosstalk. The development of detection techniques for the cooccurrence of PTMs in recent years has uncovered previously unappreciated mechanisms of their crosstalk. This has led to the emergence of evidence supporting an association between α-Syn PTMs crosstalk and synucleinopathies. In this review, we provide a comprehensive evaluation of α-Syn PTMs, their impact on misfolding and pathogenicity, the pharmacological means of targeting them, and their potential as biomarkers of disease. We also highlight the importance of the crosstalk between these PTMs in α-Syn function and aggregation. Insight into these PTMS and the complexities of their crosstalk can improve our understanding of the pathogenesis of synucleinopathies and identify novel targets of therapeutic potential. Significance Statement α-Synuclein is a key pathogenic protein in Parkinson’s disease and other synucleinopathies, making it a leading therapeutic target for disease modification. Multiple posttranslational modifications occur at various sites in α-Synuclein and alter its biophysical and pathological properties, some interacting with one another to add to the complexity of the pathogenicity of this protein. This review details these modifications, their implications in disease, and potential therapeutic opportunities. Full Article
ia Cytochrome P450 Enzymes: The Old Pandoras Box with an Ever-Growing Hope for Therapy Optimization and Drug Development--Editorial [Editorial] By pharmrev.aspetjournals.org Published On :: 2024-10-16T07:40:25-07:00 Full Article
ia The 75-Year Anniversary of the Department of Physiology and Pharmacology at Karolinska Institutet--Examples of Recent Accomplishments and Future Perspectives [75th Anniversary Celebration Collection Special Section-Perspective] By pharmrev.aspetjournals.org Published On :: 2024-10-16T07:40:25-07:00 Karolinska Institutet is a medical university encompassing 21 departments distributed across three departmental or campus groups. Pharmacological research has a long and successful tradition at the institute with a multitude of seminal findings in the areas of neuronal control of vasodilatation, cardiovascular pharmacology, neuropsychopharmacology, receptor pharmacology, and pharmacogenomics that resulted in, among many other recognitions, two Nobel prizes in Physiology and Medicine, one in 1970 to Ulf von Euler for his discovery of the processes involved in storage, release, and inactivation of neurotransmitters and the other in 1982 to Sune Bergström and Bengt Samuelsson for their work on prostaglandins and the discovery of leukotrienes. Pharmacology at Karolinska Institutet has over the last decade been ranked globally among the top 10 according to the QS World University Ranking. With the Department of Physiology and Pharmacology now celebrating its 75-year anniversary, we wanted to take this as an opportunity to showcase recent research achievements and how they paved the way for current activities at the department. We emphasize examples from preclinical and clinical research where the dpartment's integrative environment and robust infrastructure have successfully facilitated the translation of findings into clinical applications and patient benefits. The close collaboration between preclinical scientists and clinical researchers across various disciplines, along with a strong network of partnerships within the department and beyond, positions us to continue leading world-class pharmacological research at the Department of Physiology and Pharmacology for decades to come. Significance Statement Pharmacological research at Karolinska Institutet has a long and successful history. Given the 75-year anniversary of the Department of Physiology and Pharmacology, this perspective provides an overview of recent departmental achievements and future trajectories. For these developments, interdisciplinary and intersectoral collaborations and a clear focus on result translation are key elements to continue its legacy of world-leading pharmacological research. Full Article
ia Pharmacological Approaches to Hearing Loss [75th Anniversary Celebration Collection Special Section] By pharmrev.aspetjournals.org Published On :: 2024-10-16T07:40:25-07:00 Hearing disorders pose significant challenges to individuals experiencing them and their overall quality of life, emphasizing the critical need for advanced pharmacological approaches to address these conditions. Current treatment options often focus on amplification devices, cochlear implants, or other rehabilitative therapies, leaving a substantial gap regarding effective pharmacological interventions. Advancements in our understanding of the molecular and cellular mechanisms involved in hearing disorders induced by noise, aging, and ototoxicity have opened new avenues for drug development, some of which have led to numerous clinical trials, with promising results. The development of optimal drug delivery solutions in animals and humans can also enhance the targeted delivery of medications to the ear. Moreover, large genome studies contributing to a genetic understanding of hearing loss in humans combined with advanced molecular technologies in animal studies have shown a great potential to increase our understanding of the etiologies of hearing loss. The auditory system exhibits circadian rhythms and temporal variations in its physiology, its vulnerability to auditory insults, and its responsiveness to drug treatments. The cochlear clock rhythms are under the control of the glucocorticoid system, and preclinical evidence suggests that the risk/benefit profile of hearing disorder treatments using chronopharmacological approaches would be beneficial. If translatable to the bedside, such approaches may improve the outcome of clinical trials. Ongoing research into the molecular and genetic basis of auditory disorders, coupled with advancements in drug formulation and delivery as well as optimized timing of drug administration, holds great promise of more effective treatments. Significance Statement Hearing disorders pose significant challenges to individuals and their overall quality of life, emphasizing the critical need for advanced pharmacological approaches to address these conditions. Ongoing research into the molecular and genetic basis of auditory disorders, coupled with advancements in drug delivery procedures and optimized timing of drug administration, holds the promise of more effective treatments. Full Article
ia Nitric Oxide Signaling and Regulation in the Cardiovascular System: Recent Advances [75th Anniversary Celebration Collection Special Section] By pharmrev.aspetjournals.org Published On :: 2024-10-16T07:40:25-07:00 Nitric oxide (NO) from endothelial NO synthase importantly contributes to vascular homeostasis. Reduced NO production or increased scavenging during disease conditions with oxidative stress contribute to endothelial dysfunction and NO deficiency. In addition to the classical enzymatic NO synthases (NOS) system, NO can also be generated via the nitrate-nitrite-NO pathway. Dietary and pharmacological approaches aimed at increasing NO bioactivity, especially in the cardiovascular system, have been the focus of much research since the discovery of this small gaseous signaling molecule. Despite wide appreciation of the biological role of NOS/NO signaling, questions still remain about the chemical nature of NOS-derived bioactivity. Recent studies show that NO-like bioactivity can be efficiently transduced by mobile NO-ferroheme species, which can transfer between proteins, partition into a hydrophobic phase, and directly activate the soluble guanylyl cyclase-cGMP-protein kinase G pathway without intermediacy of free NO. Moreover, interaction between red blood cells and the endothelium in the regulation of vascular NO homeostasis have gained much attention, especially in conditions with cardiometabolic disease. In this review we discuss both classical and nonclassical pathways for NO generation in the cardiovascular system and how these can be modulated for therapeutic purposes. Significance Statement After four decades of intensive research, questions persist about the transduction and control of nitric oxide (NO) synthase bioactivity. Here we discuss NO signaling in cardiovascular health and disease, highlighting new findings, such as the important role of red blood cells in cardiovascular NO homeostasis. Nonclassical signaling modes, like the nitrate-nitrite-NO pathway, and therapeutic opportunities related to the NO system are discussed. Existing and potential pharmacological treatments/strategies, as well as dietary components influencing NO generation and signaling are covered. Full Article
ia International Union of Basic and Clinical Pharmacology CXV: The Class F of G Protein-Coupled Receptors [75th Anniversary Celebration Collection Special Section] By pharmrev.aspetjournals.org Published On :: 2024-10-16T07:40:25-07:00 The class F of G protein-coupled receptors (GPCRs) consists of 10 Frizzleds (FZD1–10) and Smoothened (SMO). FZDs bind and are activated by secreted lipoglycoproteins of the Wingless/Int-1 (WNT) family, and SMO is indirectly activated by the Hedgehog (Hh) family of morphogens acting on the transmembrane protein Patched. The advance of our understanding of FZDs and SMO as dynamic transmembrane receptors and molecular machines, which emerged during the past 14 years since the first-class F GPCR IUPHAR nomenclature report, justifies an update. This article focuses on the advances in molecular pharmacology and structural biology providing new mechanistic insight into ligand recognition, receptor activation mechanisms, signal initiation, and signal specification. Furthermore, class F GPCRs continue to develop as drug targets, and novel technologies and tools such as genetically encoded biosensors and CRISP/Cas9 edited cell systems have contributed to refined functional analysis of these receptors. Also, advances in crystal structure analysis and cryogenic electron microscopy contribute to the rapid development of our knowledge about structure-function relationships, providing a great starting point for drug development. Despite the progress, questions and challenges remain to fully understand the complexity of the WNT/FZD and Hh/SMO signaling systems. Significance Statement The recent years of research have brought about substantial functional and structural insight into mechanisms of activation of Frizzleds and Smoothened. While the advance furthers our mechanistic understanding of ligand recognition, receptor activation, signal specification, and initiation, broader opportunities emerge that allow targeting class F GPCRs for therapy and regenerative medicine employing both biologics and small molecule compounds. Full Article
ia Neuroactive Kynurenines as Pharmacological Targets: New Experimental Tools and Exciting Therapeutic Opportunities [75th Anniversary Celebration Collection Special Section] By pharmrev.aspetjournals.org Published On :: 2024-10-16T07:40:25-07:00 Both preclinical and clinical studies implicate functional impairments of several neuroactive metabolites of the kynurenine pathway (KP), the major degradative cascade of the essential amino acid tryptophan in mammals, in the pathophysiology of neurologic and psychiatric diseases. A number of KP enzymes, such as tryptophan 2,3-dioxygenase (TDO2), indoleamine 2,3-dioxygenases (IDO1 and IDO2), kynurenine aminotransferases (KATs), kynurenine 3-monooxygenase (KMO), 3-hydroxyanthranilic acid oxygenase (3-HAO), and quinolinic acid phosphoribosyltransferase (QPRT), control brain KP metabolism in health and disease and are therefore increasingly considered to be promising targets for the treatment of disorders of the nervous system. Understanding the distribution, cellular expression, and regulation of KP enzymes and KP metabolites in the brain is therefore critical for the conceptualization and implementation of successful therapeutic strategies. Significance Statement Studies have implicated the kynurenine pathway of tryptophan in the pathophysiology of neurologic and psychiatric diseases. Key enzymes of the kynurenine pathway regulate brain metabolism in both health and disease, making them promising targets for treating these disorders. Therefore, understanding the distribution, cellular expression, and regulation of these enzymes and metabolites in the brain is critical for developing effective therapeutic strategies. This review endeavors to describe these processes in detail.: Full Article
ia Seventy-Five Years of Interactions: The Department of Physiology and Pharmacology at Karolinska Institutet and Pharmacological Reviews [75th Anniversary Celebration Collection Special Section-Editorial] By pharmrev.aspetjournals.org Published On :: 2024-10-16T07:40:25-07:00 Full Article
ia Summing Up Pharmacological Reviews 75th Anniversary Year and a Look to the Future [75th Anniversary Celebration Collection Special Section-Editorial] By pharmrev.aspetjournals.org Published On :: 2024-10-16T07:40:25-07:00 Full Article
ia Low-Field (64 mT) Portable MRI for Rapid Point-of-Care Diagnosis of Dissemination in Space in Patients Presenting with Optic Neuritis [CLINICAL PRACTICE] By www.ajnr.org Published On :: 2024-11-07T15:14:12-08:00 BACKGROUND AND PURPOSE: Low-field 64 mT portable brain MRI has recently shown diagnostic promise for MS. This study aimed to evaluate the utility of portable MRI (pMRI) in assessing dissemination in space (DIS) in patients presenting with optic neuritis and determine whether deploying pMRI in the MS clinic can shorten the time from symptom onset to MRI. MATERIALS AND METHODS: Newly diagnosed patients with optic neuritis referred to a tertiary academic MS center from July 2022 to January 2024 underwent both point-of-care pMRI and subsequent 3T conventional MRI (cMRI). Images were evaluated for periventricular (PV), juxtacortical (JC), and infratentorial (IT) lesions. DIS was determined on brain MRI per 2017 McDonald criteria. Test characteristics were computed by using cMRI as the reference. Interrater and intermodality agreement between pMRI and cMRI were evaluated by using the Cohen . Time from symptom onset to pMRI and cMRI during the study period was compared with the preceding 1.5 years before pMRI implementation by using Kruskal-Wallis with post hoc Dunn tests. RESULTS: Twenty patients (median age: 32.5 years [interquartile range {IQR}, 28–40]; 80% women) were included, of whom 9 (45%) and 5 (25%) had DIS on cMRI and pMRI, respectively. Median time interval between pMRI and cMRI was 7 days (IQR, 3.5–12.5). Interrater agreement was very good for PV (95%, = 0.89), and good for JC and IT lesions (90%, = 0.69 for both). Intermodality agreement was good for PV (90%, = 0.80) and JC (85%, = 0.63), and moderate for IT lesions (75%, = 0.42) and DIS (80%, = 0.58). pMRI had a sensitivity of 56% and specificity of 100% for DIS. The median time from symptom onset to pMRI was significantly shorter (8.5 days [IQR 7–12]) compared with the interval to cMRI before pMRI deployment (21 days [IQR 8–49], n = 50) and after pMRI deployment (15 days [IQR 12–29], n = 30) (both P < .01). Time from symptom onset to cMRI in those periods was not significantly different (P = .29). CONCLUSIONS: In patients with optic neuritis, pMRI exhibited moderate concordance, moderate sensitivity, and high specificity for DIS compared with cMRI. Its integration into the MS clinic reduced the time from symptom onset to MRI. Further studies are warranted to evaluate the role of pMRI in expediting early MS diagnosis and as an imaging tool in resource-limited settings. Full Article
ia Arterial Spin-Labeling Perfusion Lightbulb Sign: An Imaging Biomarker of Pediatric Posterior Fossa Hemangioblastoma [CLINICAL PRACTICE] By www.ajnr.org Published On :: 2024-11-07T15:14:12-08:00 BACKGROUND AND PURPOSE: Hemangioblastoma is a rare vascular tumor that occurs within the central nervous system in children. Differentiating hemangioblastoma from other posterior fossa tumors can be challenging on imaging, and preoperative diagnosis can change the neurosurgical approach. We hypothesize that a "lightbulb sign" on the arterial spin-labeling (ASL) sequence (diffuse homogeneous intense hyperperfusion within the solid component of the tumor) will provide additional imaging finding to differentiate hemangioblastoma from other posterior fossa tumors. MATERIALS AND METHODS: In this retrospective comparative observational study, we only included pathology-proved cases of hemangioblastoma, while the control group consisted of other randomly selected pathology-proved posterior fossa tumors from January 2022 to January 2024. Two blinded neuroradiologists analyzed all applicable MRI sequences, including ASL sequence if available. ASL was analyzed for the lightbulb sign. Disagreements between the radiologists were resolved by a third pediatric neuroradiologist. 2 and Fisher exact test were used to analyze the data. RESULTS: Ninety-five patients were enrolled in the study; 57 (60%) were boys. The median age at diagnosis was 8 years old (interquartile range: 3–14). Of the enrolled patients, 8 had hemangioblastoma, and 87 had other posterior fossa tumors, including medulloblastoma (n = 31), pilocytic astrocytoma (n = 23), posterior fossa ependymoma type A (n = 16), and other tumors (n = 17). The comparison of hemangioblastoma versus nonhemangioblastoma showed that peripheral edema (P = .02) and T2-flow void (P = .02) favor hemangioblastoma, whereas reduced diffusion (low ADC) (P = .002) and ventricular system extension (P = .001) favor nonhemangioblastoma tumors. Forty-two cases also had ASL perfusion sequences. While high perfusion favors hemangioblastoma (P = .03), the lightbulb sign shows a complete distinction because all the ASL series of hemangioblastoma cases (n = 4) showed the lightbulb sign, whereas none of the nonhemangioblastoma cases (n = 38) showed the sign (P < .001). CONCLUSIONS: Lightbulb-like intense and homogeneous hyperperfusion patterns on ASL are helpful in diagnosing posterior fossa hemangioblastoma in children. Full Article
ia Diffusion Analysis of Intracranial Epidermoid, Head and Neck Epidermal Inclusion Cyst, and Temporal Bone Cholesteatoma [CLINICAL PRACTICE] By www.ajnr.org Published On :: 2024-11-07T15:14:12-08:00 BACKGROUND AND PURPOSE: Intracranial epidermoids temporal bone cholesteatomas, and head and neck epidermal inclusion cysts are typically slow-growing, benign conditions arising from ectodermal tissue. They exhibit increased signal on DWI. While much of the imaging literature describes these lesions as showing diffusion restriction, we investigated these qualitative signal intensities and interpretations of restricted diffusion with respect to normal brain structures. This study aimed to quantitatively evaluate the ADC values and histogram features of these lesions. MATERIALS AND METHODS: This retrospective study included children with histologically confirmed diagnoses of intracranial epidermoids, temporal bone cholesteatomas, or head and neck epidermal inclusion cysts. Lesions were segmented, and voxelwise calculation of ADC values was performed along with histogram analysis. ADC calculations were validated with a second analysis software to ensure accuracy. Normal brain ROIs—including the cerebellum, white matter, and thalamus—served as normal comparators. Correlational analysis and Bland-Altman plots assessed agreement among software tools for ADC calculations. Differences in the distribution of values between the lesions and normal brain tissues were assessed using the Wilcoxon rank sum and Kruskal-Wallis tests. RESULTS: Forty-eight pathology-proved cases were included in this study. Among them, 13 (27.1%) patients had intracranial epidermoids 14 (29.2%) had head and neck epidermal inclusion cysts, and 21 (43.7%) had temporal bone cholesteatomas. The mean age was 8.67 (SD, 5.30) years, and 27 (56.3%) were female. The intraclass correlation for absolute agreement for lesional ADC between the 2 software tools was 0.997 (95% CI, 0.995–0.998). The intracranial epidermoid head and neck epidermal inclusion cyst, and temporal bone cholesteatoma median ADC values were not significantly different (973.7 versus 875.7 versus 933.2 x 10–6 mm2/s, P = .265). However, the ADCs of the 3 types of lesions were higher than those of 3 normal brain tissue types (933 versus 766, x 10–6 mm2/s, P < .001). CONCLUSIONS: The ADC values of intracranial epidermoids, temporal bone cholesteatomas, and head and neck epidermal inclusion cysts are higher than those of normal brain regions. It is not accurate to simply classify these lesions as exhibiting restricted diffusion or reduced diffusivity without considering the tissue used for comparison. The observed hyperintensity on DWI compared with the brain is likely attributable to a relatively higher contribution of the T2 shinethrough effect. Full Article
ia Automated Volumetric Software in Dementia: Help or Hindrance to the Neuroradiologist? [RESEARCH] By www.ajnr.org Published On :: 2024-11-07T15:14:12-08:00 BACKGROUND AND PURPOSE: Brain atrophy occurs in the late stage of dementia, yet structural MRI is widely used in the work-up. Atrophy patterns can suggest a diagnosis of Alzheimer disease (AD) or frontotemporal dementia (FTD) but are difficult to assess visually. We hypothesized that the availability of a quantitative volumetric brain MRI report would increase neuroradiologists’ accuracy in diagnosing AD, FTD, or healthy controls compared with visual assessment. MATERIALS AND METHODS: Twenty-two patients with AD, 17 with FTD, and 21 cognitively healthy patients were identified from the electronic health systems record and a behavioral neurology clinic. Four neuroradiologists evaluated T1-weighted anatomic MRI studies with and without a volumetric report. Outcome measures were the proportion of correct diagnoses of neurodegenerative disease versus normal aging ("rough accuracy") and AD versus FTD ("exact accuracy"). Generalized linear mixed models were fit to assess whether the use of a volumetric report was associated with higher accuracy, accounting for random effects of within-rater and within-subject variability. Post hoc within-group analysis was performed with multiple comparisons correction. Residualized volumes were tested for an association with the diagnosis using ANOVA. RESULTS: There was no statistically significant effect of the report on overall correct diagnoses. The proportion of "exact" correct diagnoses was higher with the report versus without the report for AD (0.52 versus 0.38) and FTD (0.49 versus 0.32) and lower for cognitively healthy (0.75 versus 0.89). The proportion of "rough" correct diagnoses of neurodegenerative disease was higher with the report than without the report within the AD group (0.59 versus 0.41), and it was similar within the FTD group (0.66 versus 0.63). Post hoc within-group analysis suggested that the report increased the accuracy in AD (OR = 2.77) and decreased the accuracy in cognitively healthy (OR = 0.25). Residualized hippocampal volumes were smaller in AD (mean difference –1.8; multiple comparisons correction, –2.8 to –0.8; P < .001) and FTD (mean difference –1.2; multiple comparisons correction, –2.2 to –0.1; P = .02) compared with cognitively healthy. CONCLUSIONS: The availability of a brain volumetric report did not improve neuroradiologists’ accuracy over visual assessment in diagnosing AD or FTD in this limited sample. Post hoc analysis suggested that the report may have biased readers incorrectly toward a diagnosis of neurodegeneration in cognitively healthy adults. Full Article
ia Differences in Cervical Spine Fractures in Patients Younger or Older Than 65 Years of Age: Implications for the Canadian C-Spine Rule [CLINICAL PRACTICE] By www.ajnr.org Published On :: 2024-11-07T15:14:12-08:00 BACKGROUND AND PURPOSE: There has been a distinction made in the 2001 Canadian C-Spine Rule regarding patients 65 and older and younger than 65 years of age as far as indications for cervical spine CT scanning. We sought to determine if there are differences in the symptoms, mechanisms of injury, fracture locations, and types that are still relevant in 2024. MATERIALS AND METHODS: The institutional review board approved this retrospective study of cervical spine CT emergency department results from 2 hospitals in our health system after reviewing 5 years of data in patients experiencing trauma. In addition to the primary variable of age (younger than 65 years and 65 years and older), we looked at injury mechanism, fracture types, sites, symptoms, and operative or medical treatments. Because the demographics of our home site is different from most towns in the United States, we provide race/ethnicity data. RESULTS: Of 21,986 cervical spine CTs, 190/9455 (2.0%) participants 65 years of age and older and 199/12,531 (1.6%) participants younger than 65 years of age had fractures (total, 389/21,986, 1.8%). There were more cases of falls from standing (106, 55.8%) and falls from a height (46, 4.2%) in those 65 years and older and this mechanism was associated with a higher risk of C1 and C2 fractures (52, 27.4%; and 78, 41.1%, respectively). Among the C1 fractures, anterior and posterior arch fractures predominated (37, 19.5%). For C2 fractures, types 2 and 3 odontoid fractures (39, 20.5%; and 12, 6.3%) were more common in the older cohort. Motor vehicle collisions were more common in the younger cohort (89, 44.7%), and they were associated with more C5–C7 fractures (47, 23.6%; 60, 30.2%; and 66, 33.2%, respectively) including the facets (49, 24.6%), spinous processes (31, 15.6%), and transverse processes (52, 26.1%). Overall, the rates of instability, surgical intervention, and asymptomatic fractures were similar in the 2 age groups. CONCLUSIONS: Cervical spine fractures appear in about 1.8% of the CT scans performed in a busy emergency department environment. Fractures in the elderly occur more commonly due to falls, are located at C1 and C2, and may involve ligamentous injuries. Younger patients incur trauma more commonly due to motor vehicle collisions, and they are more likely to affect the posterior elements, especially C5–C7. The differences in trends for fractures in the 65 years of age and older and younger than 65 years of age groups have persisted since the Canadian C-Spine Rule 1996–1998 data were collected. Full Article
ia Predictors and Outcomes of Periprocedural Intracranial Hemorrhage after Stenting for Symptomatic Intracranial Atherosclerotic Stenosis [CLINICAL PRACTICE] By www.ajnr.org Published On :: 2024-11-07T15:14:12-08:00 BACKGROUND AND PURPOSE: Periprocedural intracranial hemorrhage is one of common complications after stent placement for symptomatic intracranial atherosclerotic stenosis. This study was conducted to demonstrate predictors and long-term outcomes of periprocedural intracranial hemorrhage after stent placement for symptomatic intracranial atherosclerotic stenosis. MATERIALS AND METHODS: We retrospectively analyzed patients with symptomatic intracranial atherosclerotic stenosis stent placement in a prospective cohort at a high-volume stroke center. Clinical, radiologic, and periprocedural characteristics and long-term outcomes were reviewed. Periprocedural intracranial hemorrhage was classified as procedure-related hemorrhage (PRH) and non-procedure-related hemorrhage (NPRH). The long-term outcomes were compared between patients with PRH and NPRH, and the predictors of NPRH were explored. RESULTS: Among 1849 patients, 24 (1.3%) had periprocedural intracranial hemorrhage, including PRH (4) and NPRH (20). The postprocedural 30-day mRS was 0–2 in 9 (37.5%) cases, 3–5 in 5 (20.8%) cases, and 6 in 10 (41.7%) cases. For the 14 survivors, the long-term (median of 78 months) mRS were 0–2 in 10 (76.9%) cases and 3–5 in 3 (23.1%) cases. The proportion of poor long-term outcomes (mRS ≥3) in patients with NPRH was significantly higher than those with PRH (68.4% versus 0%, P = .024). Anterior circulation (P = .002), high preprocedural stenosis rate (P < .001), and cerebral infarction within 30 days (P = .006) were independent predictors of NPRH after stent placement. CONCLUSIONS: Patients with NPRH had worse outcomes than those with PRH after stent placement for symptomatic ICAS. Anterior circulation, severe preprocedural stenosis, and recent infarction are independent predictors of NPRH. Full Article
ia Stent Retriever AssIsted Lysis Technique with Tirofiban: A Potential Bailout Alternative to Angioplasty and Stenting [CLINICAL PRACTICE] By www.ajnr.org Published On :: 2024-11-07T15:14:12-08:00 BACKGROUND AND PURPOSE: Angioplasty and stent placement have been described as a bailout technique in individuals with failed thrombectomy. We aimed to investigate Stent retriever AssIsted Lysis (SAIL) with tirofiban before angioplasty and stent placement. MATERIALS AND METHODS: Patients from 2 comprehensive stroke centers were reviewed (2020–2023). We included patients with failed thrombectomy and/or underlying intracranial stenosis who received SAIL with tirofiban before the intended angioplasty and stent placement. SAIL consisted of deploying a stent retriever through the occluding lesion to create a bypass channel and infuse 10 mL of tirofiban for 10 minutes either intra-arterially or IV. The stent retriever was re-sheathed before retrieval. The primary end points were successful reperfusion (expanded TICI 2b–3) and symptomatic intracerebral hemorrhage. Additional end points included 90-day mRS 0–2 and mortality. RESULTS: After a median of 3 (interquartile range, 2–4) passes, 44 patients received the SAIL bridging protocol with tirofiban, and later they were considered potential candidates for angioplasty and stent placement bailout (43.2%, intra-arterial SAIL). Post-SAIL successful reperfusion was obtained in 79.5%. A notable residual stenosis (>50%) after successful SAIL was observed in 45.7%. No significant differences were detected according to post-SAIL: successful reperfusion (intra-arterial SAIL, 80.0% versus IV-SAIL, 78.9%; P = .932), significant stenosis (33.3% versus 55.0%; P = .203), early symptomatic re-occlusion (0% versus 8.0%; P = .207), or symptomatic intracerebral hemorrhage (5.3% versus 8.0%; P = .721). Rescue angioplasty and stent placement were finally performed in 15 (34.1%) patients (intra-arterial SAIL 21.0% versus IV-SAIL 44%; P = .112). At 90 days, mRS 0–2 (intra-arterial SAIL 50.0% versus IV-SAIL 43.5%; P = .086) and mortality (26.3% versus 12.0%; P = .223) were also similar. CONCLUSIONS: In patients with stroke in which angioplasty and stent placement are considered, SAIL with tirofiban, either intra-arterial or IV, seems to safely induce sustained recanalization, offering a potential alternative to definitive angioplasty and stent placement. Full Article
ia Optimal Endovascular Therapy Technique for Isolated Intracranial Atherothrombotic Stroke-Related Large-Vessel Occlusion in the Acute-to-Subacute Stage [CLINICAL PRACTICE] By www.ajnr.org Published On :: 2024-11-07T15:14:12-08:00 BACKGROUND AND PURPOSE: Reocclusion after treatment is a concern in endovascular therapy for isolated intracranial atherothrombotic stroke-related large-vessel occlusion (AT-LVO). However, the optimal endovascular therapy technique for AT-LVO has not yet been investigated. This study evaluated the optimal endovascular therapy technique for AT-LVO in a real-world setting. MATERIALS AND METHODS: We conducted a historical, multicenter registry study at 51 centers that enrolled patients with AT-LVO. We divided the patients into 3 groups based on the endovascular therapy technique: mechanical thrombectomy alone, percutaneous transluminal angioplasty (PTA), and stent deployment. Mechanical thrombectomy alone was classified into the mechanical thrombectomy-only group; PTA and mechanical thrombectomy–PTA, into the PTA group; and mechanical thrombectomy–stent deployment, mechanical thrombectomy–PTA–stent deployment, PTA–stent deployment, and stent deployment–only into the stent group. The primary outcome was incidence of reocclusion of the treated vessels within 90 days of endovascular therapy completion. RESULTS: We enrolled 770 patients and analyzed 509 patients. The rates in the mechanical thrombectomy-only, PTA, and stent deployment groups were 40.7%, 44.4%, and 14.9%, respectively. Incidence rate of residual stenosis >70% of final angiography was significantly higher in the mechanical thrombectomy-only group than in the PTA and stent deployment groups (mechanical thrombectomy-only versus PTA versus stent deployment: 34.5% versus 26.3% versus 13.2%, P = .002). Reocclusion rate was significantly lower in the PTA group than in the mechanical thrombectomy-only group (adjusted hazard ratio, 0.48; 95% CI, 0.29–0.80). Of the patients, 83.5% experienced reocclusion within 10 days after endovascular therapy. Alarmingly, a substantial subset (approximately 62.0%) of patients experienced reocclusion within 2 days of endovascular therapy. Incidence of mRS scores of 0–2 ninety days after endovascular therapy was not significantly different among the 3 groups. Incidences of symptomatic intracranial hemorrhage, any other intracranial hemorrhage, and death were not significantly different. CONCLUSIONS: Incidence rate of reocclusion was significantly lower in the PTA group than in the mechanical thrombectomy-only group. We found no meaningful difference in reocclusion rates between the stent deployment and mechanical thrombectomy-only groups. In Japan, glycoprotein IIb/IIIa inhibitors are not reimbursed. Therefore, PTA might be the preferred choice for AT-LVOs due to the higher reocclusion risk with mechanical thrombectomy-only. Reocclusion was likely to occur within 10 days, particularly within 2 days post-endovascular therapy. Full Article
ia Intra-Aneurysmal High-Resolution 4D MR Flow Imaging for Hemodynamic Imaging Markers in Intracranial Aneurysm Instability [RESEARCH] By www.ajnr.org Published On :: 2024-11-07T15:14:12-08:00 BACKGROUND AND PURPOSE: Prediction of aneurysm instability is crucial to guide treatment decisions and to select appropriate patients with unruptured intracranial aneurysms (IAs) for preventive treatment. High-resolution 4D MR flow imaging and 3D quantification of aneurysm morphology could offer insights and new imaging markers for aneurysm instability. In this cross-sectional study, we aim to identify 4D MR flow imaging markers for aneurysm instability by relating hemodynamics in the aneurysm sac to 3D morphologic proxy parameters for aneurysm instability. MATERIALS AND METHODS: In 35 patients with 37 unruptured IAs, a 3T MRA and a 7T 4D MRI flow scan were performed. Five hemodynamic parameters—peak-systolic wall shear stress (WSSMAX) and time-averaged wall shear stress (WSSMEAN), oscillatory shear index (OSI), mean velocity, and velocity pulsatility index—were correlated to 6 3D morphology proxy parameters of aneurysm instability—major axis length, volume, surface area (all 3 size parameters), flatness, shape index, and curvedness—by Pearson correlation with 95% CI. Scatterplots of hemodynamic parameters that correlated with IA size (major axis length) were created. RESULTS: WSSMAX and WSSMEAN correlated negatively with all 3 size parameters (strongest for WSSMEAN with volume (r = –0.70, 95% CI –0.83 to –0.49) and OSI positively (strongest with major axis length [r = 0.87, 95% CI 0.76–0.93]). WSSMAX and WSSMEAN correlated positively with shape index (r = 0.61, 95% CI 0.36–0.78 and r = 0.49, 95% CI 0.20–0.70, respectively) and OSI negatively (r = –0.82, 95% CI –0.9 to –0.68). WSSMEAN and mean velocity correlated negatively with flatness (r = –0.35, 95% CI –0.61 to –0.029 and r = –0.33, 95% CI –0.59 to 0.007, respectively) and OSI positively (r = 0.54, 95% CI 0.26–0.74). Velocity pulsatility index did not show any statistically relevant correlation. CONCLUSIONS: Out of the 5 included hemodynamic parameters, WSSMAX, WSSMEAN, and OSI showed the strongest correlation with morphologic 3D proxy parameters of aneurysm instability. Future studies should assess these promising new imaging marker parameters for predicting aneurysm instability in longitudinal cohorts of patients with IA. Full Article