ge

Multicenter Evaluation of the QIAstat-Dx Respiratory Panel for Detection of Viruses and Bacteria in Nasopharyngeal Swab Specimens [Virology]

The QIAstat-Dx Respiratory Panel (QIAstat-Dx RP) is a multiplex in vitro diagnostic test for the qualitative detection of 20 pathogens directly from nasopharyngeal swab (NPS) specimens. The assay is performed using a simple sample-to-answer platform with results available in approximately 69 min. The pathogens identified are adenovirus, coronavirus 229E, coronavirus HKU1, coronavirus NL63, coronavirus OC43, human metapneumovirus A and B, influenza A, influenza A H1, influenza A H3, influenza A H1N1/2009, influenza B, parainfluenza virus 1, parainfluenza virus 2, parainfluenza virus 3, parainfluenza virus 4, rhinovirus/enterovirus, respiratory syncytial virus A and B, Bordetella pertussis, Chlamydophila pneumoniae, and Mycoplasma pneumoniae. This multicenter evaluation provides data obtained from 1,994 prospectively collected and 310 retrospectively collected (archived) NPS specimens with performance compared to that of the BioFire FilmArray Respiratory Panel, version 1.7. The overall percent agreement between QIAstat-Dx RP and the comparator testing was 99.5%. In the prospective cohort, the QIAstat-Dx RP demonstrated a positive percent agreement of 94.0% or greater for the detection of all but four analytes: coronaviruses 229E, NL63, and OC43 and rhinovirus/enterovirus. The test also demonstrated a negative percent agreement of ≥97.9% for all analytes. The QIAstat-Dx RP is a robust and accurate assay for rapid, comprehensive testing for respiratory pathogens.




ge

Validation of an Epstein-Barr Virus Antibody Risk Stratification Signature for Nasopharyngeal Carcinoma by Use of Multiplex Serology [Virology]

Serological testing for nasopharyngeal carcinoma (NPC) has recently been reinvigorated by the implementation of novel Epstein-Barr virus (EBV)-specific IgA and IgG antibodies from a proteome array. Although proteome arrays are well suited for comprehensive antigen selection, they are not applicable for large-scale studies. We adapted a 13-marker EBV antigen signature for NPC risk identified by proteome arrays to multiplex serology to establish an assay for large-scale studies. Taiwanese NPC cases (n = 175) and matched controls (n = 175) were used for assay validation. Spearman’s correlation was calculated, and the diagnostic value of all multiplex markers was assessed independently using the area under the receiver operating characteristic curve (AUC). Two refined signatures were identified using stepwise logistic regression and internally validated with 10-fold cross validation. Array and multiplex serology showed strong correlation for each individual EBV marker, as well as for a 13-marker combined model on continuous data. Two refined signatures with either four (LF2 and BGLF2 IgG, LF2 and BMRF1 IgA) or two (LF2 and BGLF2 IgG) antibodies on dichotomous data were identified as the most parsimonious set of serological markers able to distinguish NPC cases from controls with AUCs of 0.992 (95% confidence interval [CI], 0.983 to 1.000) and 0.984 (95% CI, 0.971 to 0.997), respectively. Neither differed significantly from the 13-marker model (AUC, 0.992; 95% CI, 0.982 to 1.000). All models were internally validated. Multiplex serology successfully validated the original EBV proteome microarray data. Two refined signatures of four and two antibodies were capable of detecting NPC with 99.2% and 98.4% accuracy.




ge

Transcriptome reconstruction and functional analysis of eukaryotic marine plankton communities via high-throughput metagenomics and metatranscriptomics [METHOD]

Large-scale metagenomic and metatranscriptomic data analyses are often restricted by their gene-centric approach, limiting the ability to understand organismal and community biology. De novo assembly of large and mosaic eukaryotic genomes from complex meta-omics data remains a challenging task, especially in comparison with more straightforward bacterial and archaeal systems. Here, we use a transcriptome reconstruction method based on clustering co-abundant genes across a series of metagenomic samples. We investigated the co-abundance patterns of ~37 million eukaryotic unigenes across 365 metagenomic samples collected during the Tara Oceans expeditions to assess the diversity and functional profiles of marine plankton. We identified ~12,000 co-abundant gene groups (CAGs), encompassing ~7 million unigenes, including 924 metagenomics-based transcriptomes (MGTs, CAGs larger than 500 unigenes). We demonstrated the biological validity of the MGT collection by comparing individual MGTs with available references. We identified several key eukaryotic organisms involved in dimethylsulfoniopropionate (DMSP) biosynthesis and catabolism in different oceanic provinces, thus demonstrating the potential of the MGT collection to provide functional insights on eukaryotic plankton. We established the ability of the MGT approach to capture interspecies associations through the analysis of a nitrogen-fixing haptophyte-cyanobacterial symbiotic association. This MGT collection provides a valuable resource for analyses of eukaryotic plankton in the open ocean by giving access to the genomic content and functional potential of many ecologically relevant eukaryotic species.




ge

RETrace: simultaneous retrospective lineage tracing and methylation profiling of single cells [METHOD]

Retrospective lineage tracing harnesses naturally occurring mutations in cells to elucidate single cell development. Common single-cell phylogenetic fate mapping methods have utilized highly mutable microsatellite loci found within the human genome. Such methods were limited by the introduction of in vitro noise through polymerase slippage inherent in DNA amplification, which we characterized to be approximately 10–100x higher than the in vivo replication mutation rate. Here, we present RETrace, a method for simultaneously capturing both microsatellites and methylation-informative cytosines to characterize both lineage and cell type, respectively, from the same single cell. An important unique feature of RETrace was the introduction of linear amplification of microsatellites in order to reduce in vitro amplification noise. We further coupled microsatellite capture with single-cell reduced representation bisulfite sequencing (scRRBS), to measure the CpG methylation status on the same cell for cell type inference. When compared to existing retrospective lineage tracing methods, RETrace achieved higher accuracy (88% triplet accuracy from an ex vivo HCT116 tree) at a higher cell division resolution (lowering the required number of cell division difference between single cells by approximately 100 divisions). Simultaneously, RETrace demonstrated the ability to capture on average 150,000 unique CpGs per single cell in order to accurately determine cell type. We further formulated additional developments that would allow high-resolution mapping on microsatellite-stable cells or tissues with RETrace. Overall, we present RETrace as a foundation for multi-omics lineage mapping and cell typing of single cells.




ge

Arabidopsis retrotransposon virus-like particles and their regulation by epigenetically activated small RNA [RESEARCH]

In Arabidopsis, LTR retrotransposons are activated by mutations in the chromatin gene DECREASE in DNA METHYLATION 1 (DDM1), giving rise to 21- to 22-nt epigenetically activated siRNA (easiRNA) that depend on RNA DEPENDENT RNA POLYMERASE 6 (RDR6). We purified virus-like particles (VLPs) from ddm1 and ddm1rdr6 mutants in which genomic RNA is reverse transcribed into complementary DNA. High-throughput short-read and long-read sequencing of VLP DNA (VLP DNA-seq) revealed a comprehensive catalog of active LTR retrotransposons without the need for mapping transposition, as well as independent of genomic copy number. Linear replication intermediates of the functionally intact COPIA element EVADE revealed multiple central polypurine tracts (cPPTs), a feature shared with HIV in which cPPTs promote nuclear localization. For one member of the ATCOPIA52 subfamily (SISYPHUS), cPPT intermediates were not observed, but abundant circular DNA indicated transposon "suicide" by auto-integration within the VLP. easiRNA targeted EVADE genomic RNA, polysome association of GYPSY (ATHILA) subgenomic RNA, and transcription via histone H3 lysine-9 dimethylation. VLP DNA-seq provides a comprehensive landscape of LTR retrotransposons and their control at transcriptional, post-transcriptional, and reverse transcriptional levels.




ge

Suppressor mutations in Mecp2-null mice implicate the DNA damage response in Rett syndrome pathology [RESEARCH]

Mutations in X-linked methyl-CpG-binding protein 2 (MECP2) cause Rett syndrome (RTT). To identify functional pathways that could inform therapeutic entry points, we carried out a genetic screen for secondary mutations that improved phenotypes in Mecp2/Y mice after mutagenesis with N-ethyl-N-nitrosourea (ENU). Here, we report the isolation of 106 founder animals that show suppression of Mecp2-null traits from screening 3177 Mecp2/Y genomes. Whole-exome sequencing, genetic crosses, and association analysis identified 22 candidate genes. Additional lesions in these candidate genes or pathway components associate variant alleles with phenotypic improvement in 30 lines. A network analysis shows that 63% of the genes cluster into the functional categories of transcriptional repression, chromatin modification, or DNA repair, delineating a pathway relationship with MECP2. Many mutations lie in genes that modulate synaptic signaling or lipid homeostasis. Mutations in genes that function in the DNA damage response (DDR) also improve phenotypes in Mecp2/Y mice. Association analysis was successful in resolving combinatorial effects of multiple loci. One line, which carries a suppressor mutation in a gene required for cholesterol synthesis, Sqle, carries a second mutation in retinoblastoma binding protein 8, endonuclease (Rbbp8, also known as CtIP), which regulates a DDR choice in double-stranded break (DSB) repair. Cells from Mecp2/Y mice have increased DSBs, so this finding suggests that the balance between homology-directed repair and nonhomologous end joining is important for neuronal cells. In this and other lines, two suppressor mutations confer greater improvement than one alone, suggesting that combination therapies could be effective in RTT.




ge

Genome Research




ge

Correction: Targeting IDH1 as a Prosenescent Therapy in High-grade Serous Ovarian Cancer




ge

Endogenous PAD4 in Breast Cancer Cells Mediates Cancer Extracellular Chromatin Network Formation and Promotes Lung Metastasis

Peptidyl arginine deiminase 4 (PAD4/PADI4) is a posttranslational modification enzyme that converts protein arginine or mono-methylarginine to citrulline. The PAD4-mediated hypercitrullination reaction in neutrophils causes the release of nuclear chromatin to form a chromatin network termed neutrophil extracellular traps (NET). NETs were first described as antimicrobial fibers that bind and kill bacteria. However, it is not known whether PAD4 can mediate the release of chromatin DNA into the extracellular space of cancer cells. Here, we report that murine breast cancer 4T1 cells expressing high levels of PADI4 can release cancer extracellular chromatin networks (CECN) in vitro and in vivo. Deletion of Padi4 using CRISPR/Cas9 abolished CECN formation in 4T1 cells. Padi4 deletion from 4T1 cells also reduced the rate of tumor growth in an allograft model, and decreased lung metastasis by 4T1 breast cancers. DNase I treatment, which degrades extracellular DNA including CECNs, also reduced breast to lung metastasis of Padi4 wild-type 4T1 cells in allograft experiments in the Padi4-knockout mice. We further demonstrated that DNase I treatment in this mouse model did not alter circulating tumor cells but decreased metastasis through steps after intravasation. Taken together, our genetic studies show that PAD4 plays a cell autonomous role in cancer metastasis, thus revealing a novel strategy for preventing cancer metastasis by inhibiting cancer cell endogenous PAD4.

Implications:

This study shows that PADI4 can mediate the formation of CECNs in 4T1 cells, and that endogenous PADI4 plays an essential role in breast cancer lung metastasis.

Visual Overview:

http://mcr.aacrjournals.org/content/molcanres/18/5/735/F1.large.jpg.




ge

Nucleostemin Modulates Outcomes of Hepatocellular Carcinoma via a Tumor Adaptive Mechanism to Genomic Stress

Hepatocellular carcinomas (HCC) are adapted to survive extreme genomic stress conditions imposed by hyperactive DNA replication and genotoxic drug treatment. The underlying mechanisms remain unclear, but may involve intensified DNA damage response/repair programs. Here, we investigate a new role of nucleostemin (NS) in allowing HCC to survive its own malignancy, as NS was previously shown to promote liver regeneration via a damage repair mechanism. We first established that a higher NS transcript level correlates with high-HCC grades and poor prognostic signatures, and is an independent predictor of shorter overall and progression-free survival specifically for HCC and kidney cancer but not for others. Immunostaining confirmed that NS is most abundantly expressed in high-grade and metastatic HCCs. Genome-wide analyses revealed that NS is coenriched with MYC target and homologous recombination (HR) repair genes in human HCC samples and functionally intersects with those involved in replication stress response and HR repair in yeasts. In support, NS-high HCCs are more reliant on the replicative/oxidative stress response pathways, whereas NS-low HCCs depend more on the mTOR pathway. Perturbation studies showed NS function in protecting human HCC cells from replication- and drug-induced DNA damage. Notably, NS depletion in HCC cells increases the amounts of physical DNA damage and cytosolic double-stranded DNA, leading to a reactive increase of cytokines and PD-L1. This study shows that NS provides an essential mechanism for HCC to adapt to high genomic stress for oncogenic maintenance and propagation. NS deficiency sensitizes HCC cells to chemotherapy but also triggers tumor immune responses.

Implications:

HCC employs a novel, nucleostemin (NS)-mediated-mediated adaptive mechanism to survive high genomic stress conditions, a deficiency of which sensitizes HCC cells to chemotherapy but also triggers tumor immune responses.




ge

Cinnamaldehyde Inhibits Inflammation of Human Synoviocyte Cells Through Regulation of Jak/Stat Pathway and Ameliorates Collagen-Induced Arthritis in Rats [Inflammation, Immunopharmacology, and Asthma]

Cinnamaldehyde (Cin), a bioactive cinnamon essential oil from traditional Chinese medicine herb Cinnamomum cassia, has been reported to have multipharmacological activities including anti-inflammation. However, its role and molecular mechanism of anti-inflammatory activity in musculoskeletal tissues remains unclear. Here, we first investigated the effects and molecular mechanisms of Cin in human synoviocyte cells. Then in vivo therapeutic effect of Cin on collagen-induced arthritis (CIA) also studied. Cell Counting Kit ‎CCK-8 assay was performed to evaluate the cell cytotoxicity. Proinflammatory cytokine expression was evaluated using quantitative polymerase chain reaction and ELISA. Protein expression was measured by western blotting. The in vivo effect of Cin (75 mg/kg per day) was evaluated in rats with CIA by gavage administration. Disease progression was assessed by clinical scoring, radiographic, and histologic examinations. Cin significantly inhibited interleukin (IL)-1β–induced IL-6, IL-8, and tumor necrosis factor-α release from human synoviocyte cells. The molecular analysis revealed that Cin impaired IL-6–induced activation of Janus kinase 2 (JAK2), signal transducer and activator of transcription 1 (STAT1), and STAT3 signaling pathway by inhibiting the phosphorylation of JAK2, STAT1, and STAT3, without affecting NF-B pathway. Cin reduced collagen-induced swollen paw volume of arthritic rats. The anti-inflammation effects of Cin were associated with decreased severity of arthritis, joint swelling, and reduced bone erosion and destruction. Furthermore, serum IL-6 level was decreased when Cin administered therapeutically to CIA rats. Cin suppresses IL-1β–induced inflammation in synoviocytes through the JAK/STAT pathway and alleviated collagen-induced arthritis in rats. These data indicated that Cin might be a potential traditional Chinese medicine–derived, disease-modifying, antirheumatic herbal drug.

SIGNIFICANCE STATEMENT

In this study, we found that cinnamaldehyde (Cin) suppressed proinflammatory cytokines secretion in rheumatology arthritis synoviocyte cells by Janus kinase/signal transducer and activator of transcription pathway. The in vivo results showed that Cin ameliorated collagen-induced arthritis in rats. These findings indicate that Cin is a potential traditional Chinese medicine–derived, disease-modifying, antirheumatic herbal drug.




ge

Cordycepin Inhibits Cancer Cell Proliferation and Angiogenesis through a DEK Interaction via ERK Signaling in Cholangiocarcinoma [Gastrointestinal, Hepatic, Pulmonary, and Renal]

Cholangiocarcinoma (CCA) is a malignant tumor that arises from the epithelial cells of the bile duct and is notorious for its poor prognosis. The clinical outcome remains disappointing, and thus more effective therapeutic options are urgently required. Cordycepin, a traditional Chinese medicine, provides multiple pharmacological strategies in antitumors, but its mechanisms have not been fully elucidated. In this study, we reported that cordycepin inhibited the viability and proliferation capacity of CCA cells in a time- and dose-dependent manner determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and colony formation assay. Flow cytometry and Hoechst dye showed that cordycepin induced cancer cell apoptosis via extracellular signal-regulated kinase (ERK) 1/2 deactivation. Moreover, cordycepin significantly reduced the angiogenetic capabilities of CCA in vitro as examined by tube formation assay. We also discovered that cordycepin inhibited DEK expression by using Western blot assay. DEK serves as an oncogenic protein that is overexpressed in various gastrointestinal tumors. DEK silencing inhibited CCA cell viability and angiogenesis but not apoptosis induction determined by Western blot and flow cytometry. Furthermore, cordycepin significantly inhibited tumor growth and angiogenic capacities in a xenograft model by downregulating the expression of DEK, phosphorylated ERK1/2 CD31 and von Willebrand factor (vWF). Taken together, we demonstrated that cordycepin inhibited CCA cell proliferation and angiogenesis with a DEK interaction via downregulation in ERK signaling. These data indicate that cordycepin may serve as a novel agent for CCA clinical treatment and prognosis improvement.

SIGNIFICANCE STATEMENT

Cordycepin provides multiple strategies in antitumors, but its mechanisms are not fully elucidated, especially on cholangiocarcinoma (CCA). We reported that cordycepin inhibited the viability of CCA cells, induced apoptosis via extracellular signal-regulated kinase 1/2 deactivation and DEK inhibition, and reduced the angiogenetic capabilities of CCA both in vivo and in vitro.




ge

Hepatic Transporter Alterations by Nuclear Receptor Agonist T0901317 in Sandwich-Cultured Human Hepatocytes: Proteomic Analysis and PBPK Modeling to Evaluate Drug-Drug Interaction Risk [Metabolism, Transport, and Pharmacogenomics]

In vitro approaches for predicting drug-drug interactions (DDIs) caused by alterations in transporter protein regulation are not well established. However, reports of transporter regulation via nuclear receptor (NR) modulation by drugs are increasing. This study examined alterations in transporter protein levels in sandwich-cultured human hepatocytes (SCHH; n = 3 donors) measured by liquid chromatography–tandem mass spectrometry–based proteomic analysis after treatment with N-[4-(1,1,1,3,3,3-hexafluoro-2-hydroxypropan-2-yl)phenyl]-N-(2,2,2-trifluoroethyl)benzenesulfonamide (T0901317), the first described synthetic liver X receptor agonist. T0901317 treatment (10 μM, 48 hours) decreased the levels of organic cation transporter (OCT) 1 (0.22-, 0.43-, and 0.71-fold of control) and organic anion transporter (OAT) 2 (0.38-, 0.38-, and 0.53-fold of control) and increased multidrug resistance protein (MDR) 1 (1.37-, 1.48-, and 1.59-fold of control). The induction of NR downstream gene expression supports the hypothesis that T0901317 off-target effects on farnesoid X receptor and pregnane X receptor activation are responsible for the unexpected changes in OCT1, OAT2, and MDR1. Uptake of the OCT1 substrate metformin in SCHH was decreased by T0901317 treatment. Effects of decreased OCT1 levels on metformin were simulated using a physiologically-based pharmacokinetic (PBPK) model. Simulations showed a clear decrease in metformin hepatic exposure resulting in a decreased pharmacodynamic effect. This DDI would not be predicted by the modest changes in simulated metformin plasma concentrations. Altogether, the current study demonstrated that an approach combining SCHH, proteomic analysis, and PBPK modeling is useful for revealing tissue concentration–based DDIs caused by unexpected regulation of hepatic transporters by NR modulators.

SIGNIFICANCE STATEMENT

This study utilized an approach combining sandwich-cultured human hepatocytes, proteomic analysis, and physiologically based pharmacokinetic modeling to evaluate alterations in pharmacokinetics (PK) and pharmacodynamics (PD) caused by transporter regulation by nuclear receptor modulators. The importance of this approach from a mechanistic and clinically relevant perspective is that it can reveal drug-drug interactions (DDIs) caused by unexpected regulation of hepatic transporters and enable prediction of altered PK and PD changes, especially for tissue concentration–based DDIs.




ge

Translational Pharmacokinetic-Pharmacodynamic Modeling for an Orally Available Novel Inhibitor of Epigenetic Regulator Enhancer of Zeste Homolog 2 [Drug Discovery and Translational Medicine]

PF06821497 has been identified as an orally available small-molecule enhancer of zeste homolog 2 inhibitor. The objectives of the present study were to characterize pharmacokinetic-pharmacodynamic-disease relationships of PF06821497 in xenograft mouse models with diffuse large B-cell lymphoma (Karpas422). An indirect-response model reasonably fit dose-dependent pharmacodynamic responses [histone H3 on lysine 27 (H3K27) me3 inhibition] with an unbound EC50 of 76 nM, whereas a signal-transduction model sufficiently fit dose-dependent disease responses (tumor growth inhibition) with an unbound tumor stasis concentration (Tsc) of 168 nM. Thus, effective concentration for 70% of maximal effect (EC70) for H3K27me3 inhibition was roughly comparable to Tsc, suggesting that 70% H3K27me3 inhibition could be required for tumor stasis. Consistently, an integrated pharmacokinetic-pharmacodynamic-disease model adequately describing tumor growth inhibition also suggested that ~70% H3K27me3 inhibition was associated with tumor stasis. Based on these results, we would propose that an EC70 estimate for H3K27me3 inhibition corresponding to tumor stasis could be considered a minimum target efficacious concentration of PF06821497 in cancer patients.

SIGNIFICANCE STATEMENT

Using a mathematical modeling approach, the quantitative relationships of an orally available anticancer small-molecule enhancer of zeste homolog 2 inhibitor, PF06821497, were characterized among pharmacokinetics, pharmacodynamic biomarker inhibition, and disease responses in nonclinical xenograft models with diffuse large B-cell lymphoma. The modeling results suggest that >70% histone H3 on lysine 27 (H3K27) me3 inhibition would be required for tumor stasis (i.e., 100% tumor growth inhibition). Accordingly, we would propose that an effective concentration for 70% of maximal effect estimate for H3K27me3 inhibition could be considered a minimum target efficacious concentration of PF06821497 in cancer patients.




ge

NO-Releasing Nanoparticles Ameliorate Detrusor Overactivity in Transgenic Sickle Cell Mice via Restored NO/ROCK Signaling [Cellular and Molecular]

Sickle cell disease (SCD) is associated with overactive bladder (OAB). Detrusor overactivity, a component of OAB, is present in an SCD mouse, but the molecular mechanisms for this condition are not well-defined. We hypothesize that nitric oxide (NO)/ ras homolog gene family (Rho) A/Rho-associated kinase (ROCK) dysregulation is a mechanism for detrusor overactivity and that NO-releasing nanoparticles (NO-nps), a novel NO delivery system, may serve to treat this condition. Male adult SCD transgenic, combined endothelial NO synthases (eNOSs) and neuronal NOS (nNOS) gene-deficient (dNOS–/–), and wild-type (WT) mice were used. Empty nanoparticle or NO-np was injected into the bladder, followed by cystometric studies. The expression levels of phosphorylated eNOS (Ser-1177), protein kinase B (Akt) (Ser-473), nNOS (Ser-1412), and myosin phosphatase target subunit 1 (MYPT1) (Thr-696) were assessed in the bladder. SCD and dNOS–/– mice had a greater (P < 0.05) number of voiding and nonvoiding contractions compared with WT mice, and they were normalized by NO-np treatment. eNOS (Ser-1177) and AKT (Ser-473) phosphorylation were decreased (P < 0.05) in the bladder of SCD compared with WT mice and reversed by NO-np. Phosphorylated MYPT1, a marker of the RhoA/ROCK pathway, was increased (P < 0.05) in the bladder of SCD mice compared with WT and reversed by NO-np. nNOS phosphorylation on positive (Ser-1412) regulatory site was decreased (P < 0.05) in the bladder of SCD mice compared with WT and was not affected by NO-np. NO-nps did not affect any of the measured parameters in WT mice. In conclusion, dysregulation of NO and RhoA/ROCK pathways is associated with detrusor overactivity in SCD mice; NO-np reverses these molecular derangements in the bladder and decreases detrusor overactivity.

SIGNIFICANCE STATEMENT

Voiding abnormalities commonly affect patients with sickle cell disease (SCD) but are problematic to treat. Clarification of the science for this condition in an animal model of SCD may lead to improved interventions for it. Our findings suggest that novel topical delivery of a vasorelaxant agent nitric oxide into the bladder of these mice corrects overactive bladder by improving deranged bladder physiology regulatory signaling.




ge

Rapid acquisition through fast mapping: stable memory over time and role of prior knowledge [RESEARCH]

In recent years, there have been intensive debates on whether healthy adults acquire new word knowledge through fast mapping (FM) by a different mechanism from explicit encoding (EE). In this study, we focused on this issue and investigated to what extent retention interval, prior knowledge (PK), and lure type modulated memory after FM and EE. Healthy young participants were asked to learn novel word-picture associations through both FM and EE. Half of the pictures were from familiar categories (i.e., high PK) and the other half were from unfamiliar categories (i.e., low PK). After 10 min and 1 wk, the participants were tested by forced-choice (FC) tasks, with lures from different categories (Experiment 1) or from the same categories of the target pictures (Experiment 2). Pseudowords were used to denote names of the novel pictures and baseline performance was controlled for each task. The results showed that in both Experiments 1 and 2, memory performance remained stable after FM, while it declined after EE from 10 min to 1 wk. Moreover, the effect of PK appeared at 10 min after FM while at 1 wk after EE in Experiment 2. PK enhanced memory of word-picture associations when the lures were from the same categories (Experiment 2), rather than from different categories (Experiment 1). These results were largely confirmed in Experiment 3 when encoding condition was manipulated as a between-subjects factor, while lure type as a within-subjects factor. The findings suggest that different from EE, FM facilitates rapid acquisition and consolidation of word-picture knowledge, and highlight that PK plays an important role in this process by enhancing access to detailed information.




ge

Forget the stress: retrograde amnesia for the stress-induced impairment of extinction retrieval [BRIEF COMMUNICATIONS]

We investigated whether cycloheximide (CHX) would induce amnesia for the stress-induced impairment of extinction retrieval. First, a single restraint stress session was demonstrated to impair extinction retrieval, but not fear conditioning. A second experiment showed that when CHX was administered immediately after restraint, rats exhibited significant extinction retrieval at test (i.e., retrograde amnesia for the stress). In a third experiment, the stress session impaired various amounts of extinction durations, suggesting that the stress inhibited extinction retrieval rather than enhancing the original fear learning. These results suggest memories for acute stress are susceptible to disruption, which could have clinical implications.




ge

FAK regulates actin polymerization during sperm capacitation via the ERK2/GEF-H1/RhoA signaling pathway [RESEARCH ARTICLE]

Monica L. Salgado-Lucio, Danelia Ramirez-Ramirez, Coral Y. Jorge-Cruz, Ana L. Roa-Espitia, and Enrique O. Hernandez-Gonzalez

Actin polymerization is a crucial process during sperm capacitation. We have recently described the participation of FAK during actin polymerization in guinea pig spermatozoa. However, the mechanism by which FAK mediates these processes is unknown. Our previous data have shown that MAPK1 (hereafter referred to as ERK2) is activated during the first minutes of capacitation, and inhibition of ERK2 blocked actin polymerization and the acrosome reaction. In this current study, we found that FAK is involved in ERK2 activation – as FAK was phosphorylated at tyrosine residue 925 and bound to Grb2 – and that inhibition of FAK results in a significant decrease of ERK2 activation. We also confirmed the presence of Rho guanine nucleotide exchange factor 2 (ARHGEF2, hereafter referred to as GEF-H1), which is able to associate with RhoA during capacitation. RhoA activation and its participation in actin polymerization were also analyzed. Inhibition of FAK or ERK1/2 impeded GEF-H1 phosphorylation, RhoA activation, and the association between GEF-H1 and RhoA. Finally, we observed the presence of fibronectin on the sperm surface, its role in sperm–sperm interaction as well as participation of β-integrin in the activation of ERK2. Our results show that the signaling pathway downstream of fibronectin, via integrin, FAK, Grb2, MEK1/2, ERK2, GEF-H1 and RhoA regulates the actin polymerization associated with spermatozoa capacitation.




ge

Regenerative responses following DNA damage - {beta}-catenin mediates head regrowth in the planarian Schmidtea mediterranea [RESEARCH ARTICLE]

Annelies Wouters, Jan-Pieter Ploem, Sabine A. S. Langie, Tom Artois, Aziz Aboobaker, and Karen Smeets

Pluripotent stem cells hold great potential for regenerative medicine. Increased replication and division, such is the case during regeneration, concomitantly increases the risk of adverse outcomes through the acquisition of mutations. Seeking for driving mechanisms of such outcomes, we challenged a pluripotent stem cell system during the tightly controlled regeneration process in the planarian Schmidtea mediterranea. Exposure to the genotoxic compound methyl methanesulfonate (MMS) revealed that despite a similar DNA-damaging effect along the anteroposterior axis of intact animals, responses differed between anterior and posterior fragments after amputation. Stem cell proliferation and differentiation proceeded successfully in the amputated heads, leading to regeneration of missing tissues. Stem cells in the amputated tails showed decreased proliferation and differentiation capacity. As a result, tails could not regenerate. Interference with the body-axis-associated component β-catenin-1 increased regenerative success in tail fragments by stimulating proliferation at an early time point. Our results suggest that differences in the Wnt signalling gradient along the body axis modulate stem cell responses to MMS.




ge

CXL146, a Novel 4H-Chromene Derivative, Targets GRP78 to Selectively Eliminate Multidrug-Resistant Cancer Cells [Articles]

The 78-kDa glucose-regulated protein (GRP78), an endoplasmic reticulum (ER) chaperone, is a master regulator of the ER stress. A number of studies revealed that high levels of GRP78 protein in cancer cells confer multidrug resistance (MDR) to therapeutic treatment. Therefore, drug candidate that reduces GRP78 may represent a novel approach to eliminate MDR cancer cells. Our earlier studies showed that a set of 4H-chromene derivatives induced selective cytotoxicity in MDR cancer cells. In the present study, we elucidated its selective mechanism in four MDR cancer cell lines with one lead candidate (CXL146). Cytotoxicity results confirmed the selective cytotoxicity of CXL146 toward the MDR cancer cell lines. We noted significant overexpression of GRP78 in all four MDR cell lines compared with the parental cell lines. Unexpectedly, CXL146 treatment rapidly and dose-dependently reduced GRP78 protein in MDR cancer cell lines. Using human leukemia (HL) 60/mitoxantrone (MX) 2 cell line as the model, we demonstrated that CXL146 treatment activated the unfolded protein response (UPR); as evidenced by the activation of inositol-requiring enzyme 1α, protein kinase R–like ER kinase, and activating transcription factor 6. CXL146-induced UPR activation led to a series of downstream events, including extracellular signal-regulated kinase 1/2 and c-Jun N-terminal kinase activation, which contributed to CXL146-induced apoptosis. Targeted reduction in GRP78 resulted in reduced sensitivity of HL60/MX2 toward CXL146. Long-term sublethal CXL146 exposure also led to reduction in GRP78 in HL60/MX2. These data collectively support GRP78 as the target of CXL146 in MDR treatment. Interestingly, HL60/MX2 upon long-term sublethal CXL146 exposure regained sensitivity to mitoxantrone treatment. Therefore, further exploration of CXL146 as a novel therapy in treating MDR cancer cells is warranted.

SIGNIFICANCE STATEMENT

Multidrug resistance is one major challenge to cancer treatment. This study provides evidence that cancer cells overexpress 78-kDa glucose-regulated protein (GRP78) as a mechanism to acquire resistance to standard cancer therapies. A chromene-based small molecule, CXL146, selectively eliminates cancer cells with GRP78 overexpression via activating unfolded protein response–mediated apoptosis. Further characterization indicates that CXL146 and standard therapies complementarily target different populations of cancer cells, supporting the potential of CXL146 to overcome multidrug resistance in cancer treatment.




ge

Proteinase-Activated Receptor 4 Activation Triggers Cell Membrane Blebbing through RhoA and {beta}-Arrestin [Articles]

Proteinase-activated receptors (PARs) are a four-member family of G-protein–coupled receptors that are activated via proteolysis. PAR4 is a member of this family that is cleaved and activated by serine proteinases such as thrombin, trypsin, and cathepsin-G. PAR4 is expressed in a variety of tissues and cell types, including platelets, vascular smooth muscle cells, and neuronal cells. In studying PAR4 signaling and trafficking, we observed dynamic changes in the cell membrane, with spherical membrane protrusions that resemble plasma membrane blebbing. Since nonapoptotic membrane blebbing is now recognized as an important regulator of cell migration, cancer cell invasion, and vesicular content release, we sought to elucidate the signaling pathway downstream of PAR4 activation that leads to such events. Using a combination of pharmacological inhibition and CRISPR/CRISPR-associated protein 9 (Cas9)–mediated gene editing approaches, we establish that PAR4-dependent membrane blebbing occurs independently of the Gαq/11- and Gαi-signaling pathways and is dependent on signaling via the β-arrestin-1/2 and Ras homolog family member A (RhoA) signaling pathways. Together these studies provide further mechanistic insight into PAR4 regulation of cellular function.

SIGNIFICANCE STATEMENT

We find that the thrombin receptor PAR4 triggers cell membrane blebbing in a RhoA–and β-arrestin–dependent manner. In addition to identifying novel cellular responses mediated by PAR4, these data provide further evidence for biased signaling in PAR4 since membrane blebbing was dependent on some, but not all, signaling pathways activated by PAR4.




ge

Targeting Janus Kinases and Signal Transducer and Activator of Transcription 3 to Treat Inflammation, Fibrosis, and Cancer: Rationale, Progress, and Caution [Review Articles]

Before it was molecularly cloned in 1994, acute-phase response factor or signal transducer and activator of transcription (STAT)3 was the focus of intense research into understanding the mammalian response to injury, particularly the acute-phase response. Although known to be essential for liver production of acute-phase reactant proteins, many of which augment innate immune responses, molecular cloning of acute-phase response factor or STAT3 and the research this enabled helped establish the central function of Janus kinase (JAK) family members in cytokine signaling and identified a multitude of cytokines and peptide hormones, beyond interleukin-6 and its family members, that activate JAKs and STAT3, as well as numerous new programs that their activation drives. Many, like the acute-phase response, are adaptive, whereas several are maladaptive and lead to chronic inflammation and adverse consequences, such as cachexia, fibrosis, organ dysfunction, and cancer. Molecular cloning of STAT3 also enabled the identification of other noncanonical roles for STAT3 in normal physiology, including its contribution to the function of the electron transport chain and oxidative phosphorylation, its basal and stress-related adaptive functions in mitochondria, its function as a scaffold in inflammation-enhanced platelet activation, and its contributions to endothelial permeability and calcium efflux from endoplasmic reticulum. In this review, we will summarize the molecular and cellular biology of JAK/STAT3 signaling and its functions under basal and stress conditions, which are adaptive, and then review maladaptive JAK/STAT3 signaling in animals and humans that lead to disease, as well as recent attempts to modulate them to treat these diseases. In addition, we will discuss how consideration of the noncanonical and stress-related functions of STAT3 cannot be ignored in efforts to target the canonical functions of STAT3, if the goal is to develop drugs that are not only effective but safe.

Significance Statement

Key biological functions of Janus kinase (JAK)/signal transducer and activator of transcription (STAT)3 signaling can be delineated into two broad categories: those essential for normal cell and organ development and those activated in response to stress that are adaptive. Persistent or dysregulated JAK/STAT3 signaling, however, is maladaptive and contributes to many diseases, including diseases characterized by chronic inflammation and fibrosis, and cancer. A comprehensive understanding of JAK/STAT3 signaling in normal development, and in adaptive and maladaptive responses to stress, is essential for the continued development of safe and effective therapies that target this signaling pathway.




ge

Image Quality and Activity Optimization in Oncologic 18F-FDG PET Using the Digital Biograph Vision PET/CT System

The first Biograph Vision PET/CT system (Siemens Healthineers) was installed at the University Medical Center Groningen. Improved performance of this system could allow for a reduction in activity administration or scan duration. This study evaluated the effects of reduced scan duration in oncologic 18F-FDG PET imaging on quantitative and subjective imaging parameters and its influence on clinical image interpretation. Methods: Patients referred for a clinical PET/CT scan were enrolled in this study, received a weight-based 18F-FDG injected activity, and underwent list-mode PET acquisition at 180 s per bed position (s/bp). Acquired PET data were reconstructed using the vendor-recommended clinical reconstruction protocol (hereafter referred to as "clinical"), using the clinical protocol with additional 2-mm gaussian filtering (hereafter referred to as "clinical+G2"), and—in conformance with European Association of Nuclear Medicine Research Ltd. (EARL) specifications—using different scan durations per bed position (180, 120, 60, 30, and 10 s). Reconstructed images were quantitatively assessed for comparison of SUVs and noise. In addition, clinically reconstructed images were qualitatively evaluated by 3 nuclear medicine physicians. Results: In total, 30 oncologic patients (22 men, 8 women; age: 48–88 y [range], 67 ± 9.6 y [mean ± SD]) received a single weight-based (3 MBq/kg) 18F-FDG injected activity (weight: 45–123 kg [range], 81 ± 15 kg [mean ± SD]; activity: 135–380 MBq [range], 241 ± 47.3 MBq [mean ± SD]). Significant differences in lesion SUVmax were found between the 180-s/bp images and the 30- and 10-s/bp images reconstructed using the clinical protocols, whereas no differences were found in lesion SUVpeak. EARL-compliant images did not show differences in lesion SUVmax or SUVpeak between scan durations. Quantitative parameters showed minimal deviation (~5%) in the 60-s/bp images. Therefore, further subjective image quality assessment was conducted using the 60-s/bp images. Qualitative assessment revealed the influence of personal preference on physicians’ willingness to adopt the 60-s/bp images in clinical practice. Although quantitative PET parameters differed minimally, an increase in noise was observed. Conclusion: With the Biograph Vision PET/CT system for oncologic 18F-FDG imaging, scan duration or activity administration could be reduced by a factor of 3 or more with the use of the clinical+G2 or the EARL-compliant reconstruction protocol.




ge

Imaging DNA Damage Repair In Vivo After 177Lu-DOTATATE Therapy

Molecular radiotherapy using 177Lu-DOTATATE is a most effective treatment for somatostatin receptor–expressing neuroendocrine tumors. Despite its frequent and successful use in the clinic, little or no radiobiologic considerations are made at the time of treatment planning or delivery. On positive uptake on octreotide-based PET/SPECT imaging, treatment is usually administered as a standard dose and number of cycles without adjustment for peptide uptake, dosimetry, or radiobiologic and DNA damage effects in the tumor. Here, we visualized and quantified the extent of DNA damage response after 177Lu-DOTATATE therapy using SPECT imaging with 111In-anti-H2AX-TAT. This work was a proof-of-principle study of this in vivo noninvasive biodosimeter with β-emitting therapeutic radiopharmaceuticals. Methods: Six cell lines were exposed to external-beam radiotherapy (EBRT) or 177Lu-DOTATATE, after which the number of H2AX foci and the clonogenic survival were measured. Mice bearing CA20948 somatostatin receptor–positive tumor xenografts were treated with 177Lu-DOTATATE or sham-treated and coinjected with 111In-anti-H2AX-TAT, 111In-IgG-TAT control, or vehicle. Results: Clonogenic survival after external-beam radiotherapy was cell-line–specific, indicating varying levels of intrinsic radiosensitivity. Regarding in vitro cell lines treated with 177Lu-DOTATATE, clonogenic survival decreased and H2AX foci increased for cells expressing high levels of somatostatin receptor subtype 2. Ex vivo measurements revealed a partial correlation between 177Lu-DOTATATE uptake and H2AX focus induction between different regions of CA20948 xenograft tumors, suggesting that different parts of the tumor may react differentially to 177Lu-DOTATATE irradiation. Conclusion: 111In-anti-H2AX-TAT allows monitoring of DNA damage after 177Lu-DOTATATE therapy and reveals heterogeneous damage responses.




ge

Additional Local Therapy for Liver Metastases in Patients with Metastatic Castration-Resistant Prostate Cancer Receiving Systemic PSMA-Targeted Therapy

The aim of this study was to evaluate the efficacy of 177Lu-prostate-specific membrane antigen (PSMA)-617 (177Lu-PSMA) and selective internal radiation therapy (SIRT) for the treatment of liver metastases of castration-resistant prostate cancer. Methods: Safety and survival of patients with metastatic castration-resistant prostate cancer and liver metastases assigned to 177Lu-PSMA alone (n = 31) or in combination with SIRT (n = 5) were retrospectively analyzed. Additionally, a subgroup (n = 10) was analyzed using morphologic and molecular response criteria. Results: Median estimated survival was 5.7 mo for 177Lu-PSMA alone and 8.4 mo for combined sequential 177Lu-PSMA and SIRT. 177Lu-PSMA achieved discordant therapy responses with both regressive and progressive liver metastases in the same patient (best vs. worst responding metastases per patient: –35% vs. +63% diameter change; P < 0.05). SIRT was superior to 177Lu-PSMA for the treatment of liver metastases (0% vs. 56% progression). Conclusion: The combination of 177Lu-PSMA and SIRT is efficient and feasible for the treatment of advanced prostate cancer. 177Lu-PSMA alone seems to have limited response rates in the treatment of liver metastases.




ge

Quantitative and Qualitative Analyses of Biodistribution and PET Image Quality of a Novel Radiohybrid PSMA, 18F-rhPSMA-7, in Patients with Prostate Cancer

Radiohybrid PSMA (rhPSMA) ligands, a new class of theranostic prostate-specific membrane antigen (PSMA)–targeting agents, feature fast 18F synthesis and utility for labeling with radiometals. Here, we assessed the biodistribution and image quality of 18F-rhPSMA-7 to determine the best imaging time point for patients with prostate cancer. Methods: In total, 202 prostate cancer patients who underwent a clinically indicated 18F-rhPSMA-7 PET/CT were retrospectively analyzed, and 12 groups based on the administered activity and uptake time of PET scanning were created: 3 administered activities (low, 222–296 MBq; moderate, 297–370 MBq; and high, 371–444 MBq) and 4 uptake time points (short, 50–70 min; intermediate, 71–90 min; long, 91–110 min; and extra long, ≥111 min). For quantitative analyses, SUVmean and organ- or tumor-to-background ratio were determined for background, healthy organs, and 3 representative tumor lesions. Qualitative analyses assessed overall image quality, nonspecific blood-pool activity, and background uptake in bone or marrow using 3- or 4-point scales. Results: In quantitative analyses, SUVmean showed a significant decrease in the blood pool and lungs and an increase in the kidneys, bladder, and bones as the uptake time increased. SUVmean showed a trend to increase in the blood pool and bones as the administered activity increased. However, no significant differences were found in 377 tumor lesions with respect to the administered activity or uptake time. In qualitative analyses, the overall image quality was stable along with the uptake time, but the proportion rated to have good image quality decreased as the administered activity increased. All other qualitative image parameters showed no significant differences for the administered activities, but they showed significant trends with increasing uptake time: less nonspecific blood activity, more frequent background uptake in the bone marrow, and increased negative impact on clinical decision making. Conclusion: The biodistribution of 18F-rhPSMA-7 was similar to that of established PSMA ligands, and tumor uptake of 18F-rhPSMA-7 was stable across the administered activities and uptake times. An early imaging time point (50–70 min) is recommended for 18F-rhPSMA-7 PET/CT to achieve the highest overall image quality.




ge

Response Prediction of 177Lu-PSMA-617 Radioligand Therapy Using Prostate-Specific Antigen, Chromogranin A, and Lactate Dehydrogenase

Neuroendocrinelike transdifferentiation of prostate cancer adenocarcinomas correlates with serum levels of chromogranin A (CgA) and drives treatment resistance. The aim of this work was to evaluate whether CgA can serve as a response predictor for 177Lu-prostate-specific membrane antigen 617 (PSMA) radioligand therapy (RLT) in comparison with the established tumor markers. Methods: One hundred consecutive patients with metastasized castration-resistant prostate cancer scheduled for PSMA RLT were evaluated for prostate-specific antigen (PSA), lactate dehydrogenase (LDH), and CgA at baseline and in follow-up of PSMA RLT. Tumor uptake of PSMA ligand, a known predictive marker for response, was assessed as a control variable. Results: From the 100 evaluated patients, 35 had partial remission, 16 stable disease, 15 mixed response, and 36 progression of disease. Tumor uptake above salivary gland uptake translated into partial remission, with an odds ratio (OR) of 60.265 (95% confidence interval [CI], 5.038–720.922). Elevated LDH implied a reduced chance for partial remission, with an OR of 0.094 (95% CI, 0.017–0.518), but increased the frequency of progressive disease (OR, 2.717; 95% CI, 1.391–5.304). All patients who achieved partial remission had a normal baseline LDH. Factor-2 elevation of CgA increased the risk for progression, with an OR of 3.089 (95% CI, 1.302–7.332). Baseline PSA had no prognostic value for response prediction. Conclusion: In our cohort, baseline PSA had no prognostic value for response prediction. LDH was the marker with the strongest prognostic value, and elevated LDH increased the risk for progression of disease under PSMA RLT. Elevated CgA demonstrated a moderate impact as a negative prognostic marker in general but was explicitly related to the presence of liver metastases. Well in line with the literature, sufficient tumor uptake is a prerequisite to achieve tumor response.




ge

Patients Resistant Against PSMA-Targeting {alpha}-Radiation Therapy Often Harbor Mutations in DNA Damage-Repair-Associated Genes

Prostate-specific membrane antigen (PSMA)–targeting α-radiation therapy (TAT) is an emerging treatment modality for metastatic castration-resistant prostate cancer. There is a subgroup of patients with poor response despite sufficient expression of PSMA in their tumors. The aim of this work was to characterize PSMA-TAT–nonresponding lesions by targeted next-generation sequencing. Methods: Of 60 patients treated with 225Ac-PSMA-617, we identified 10 patients who presented with a poor response despite sufficient tumor uptake in PSMA PET/CT. We were able to perform CT-guided biopsies with histologic validation of the nonresponding lesions in 7 of these nonresponding patients. Specimens were analyzed by targeted next-generation sequencing interrogating 37 DNA damage-repair–associated genes. Results: In the 7 tumor samples analyzed, we found a total of 15 whole-gene deletions, deleterious or presumably deleterious mutations affecting TP53 (n = 3), CHEK2 (n = 2), ATM (n = 2), and BRCA1, BRCA2, PALB2, MSH2, MSH6, NBN, FANCB, and PMS1 (n = 1 each). The average number of deleterious or presumably deleterious mutations was 2.2 (range, 0–6) per patient. In addition, several variants of unknown significance in ATM, BRCA1, MSH2, SLX4, ERCC, and various FANC genes were detected. Conclusion: Patients with resistance to PSMA-TAT despite PSMA positivity frequently harbor mutations in DNA damage-repair and checkpoint genes. Although the causal role of these alterations in the patient outcome remains to be determined, our findings encourage future studies combining PSMA-TAT and DNA damage-repair–targeting agents such as poly(ADP-ribose)-polymerase inhibitors.




ge

ProPSMA: A Callout to the Nuclear Medicine Community to Change Practices with Prospective, High-Quality Data




ge

Genetic Determinants of Pheochromocytoma and Paraganglioma Imaging Phenotypes

Parallel to the application of new PET radiopharmaceuticals for pheochromocytoma and paraganglioma (collectively named PPGLs) imaging, several studies have increased our understanding on their biology, genetics, metabolomics, and embryologic origin. In this review, we highlight the current relationship between genotypes and molecular imaging phenotypes. Additionally, we summarize the referral guidelines for imaging of PPGL patients with or without knowledge of their genetic background.




ge

Incidental Findings Suggestive of COVID-19 in Asymptomatic Patients Undergoing Nuclear Medicine Procedures in a High-Prevalence Region

Infection with the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may remain asymptomatic, leading to under-recognition of the related disease, coronavirus disease, 2019 (COVID-19), and to incidental findings in nuclear imaging procedures performed for standard clinical indications. Here, we report about our local experience in a region with high COVID-19 prevalence and dynamically increasing infection rates. Methods: Within the 8-d period of March 16–24, 2020, hybrid imaging studies of asymptomatic patients who underwent 18F-FDG PET/CT or 131I SPECT/CT for standard oncologic indications at our institution in Brescia, Italy, were analyzed for findings suggestive of COVID-19. The presence, radiologic features, and metabolic activity of interstitial pneumonia were identified, correlated with the subsequent short-term clinical course, and described in a case series. Results: Six of 65 patients (9%) who underwent PET/CT for various malignancies showed unexpected signs of interstitial pneumonia on CT and elevated regional 18F-FDG avidity. Additionally, 1 of 12 patients who received radioiodine for differentiated thyroid carcinoma also showed interstitial pneumonia on SPECT/CT. Five of 7 patients had subsequent proof of COVID-19 by reverse-transcriptase polymerase chain reaction. The remaining 2 patients were not tested immediately but underwent quarantine and careful monitoring. Conclusion: Incidental findings suggestive of COVID-19 may not be infrequent in hybrid imaging of asymptomatic patients in regions with an expansive spread of SARS-CoV-2. Nuclear medicine services should prepare accordingly.




ge

Drosophila estrogen-related receptor directs a transcriptional switch that supports adult glycolysis and lipogenesis [Research Papers]

Metabolism and development must be closely coupled to meet the changing physiological needs of each stage in the life cycle. The molecular mechanisms that link these pathways, however, remain poorly understood. Here we show that the Drosophila estrogen-related receptor (dERR) directs a transcriptional switch in mid-pupae that promotes glucose oxidation and lipogenesis in young adults. dERR mutant adults are viable but display reduced locomotor activity, susceptibility to starvation, elevated glucose, and an almost complete lack of stored triglycerides. Molecular profiling by RNA-seq, ChIP-seq, and metabolomics revealed that glycolytic and pentose phosphate pathway genes are induced by dERR, and their reduced expression in mutants is accompanied by elevated glycolytic intermediates, reduced TCA cycle intermediates, and reduced levels of long chain fatty acids. Unexpectedly, we found that the central pathways of energy metabolism, including glycolysis, the tricarboxylic acid cycle, and electron transport chain, are coordinately induced at the transcriptional level in mid-pupae and maintained into adulthood, and this response is partially dependent on dERR, leading to the metabolic defects observed in mutants. Our data support the model that dERR contributes to a transcriptional switch during pupal development that establishes the metabolic state of the adult fly.




ge

Telomere length heterogeneity in ALT cells is maintained by PML-dependent localization of the BTR complex to telomeres [Research Papers]

Telomeres consist of TTAGGG repeats bound by protein complexes that serve to protect the natural end of linear chromosomes. Most cells maintain telomere repeat lengths by using the enzyme telomerase, although there are some cancer cells that use a telomerase-independent mechanism of telomere extension, termed alternative lengthening of telomeres (ALT). Cells that use ALT are characterized, in part, by the presence of specialized PML nuclear bodies called ALT-associated PML bodies (APBs). APBs localize to and cluster telomeric ends together with telomeric and DNA damage factors, which led to the proposal that these bodies act as a platform on which ALT can occur. However, the necessity of APBs and their function in the ALT pathway has remained unclear. Here, we used CRISPR/Cas9 to delete PML and APB components from ALT-positive cells to cleanly define the function of APBs in ALT. We found that PML is required for the ALT mechanism, and that this necessity stems from APBs’ role in localizing the BLM–TOP3A–RMI (BTR) complex to ALT telomere ends. Strikingly, recruitment of the BTR complex to telomeres in a PML-independent manner bypasses the need for PML in the ALT pathway, suggesting that BTR localization to telomeres is sufficient to sustain ALT activity.




ge

Targeted chemotherapy overcomes drug resistance in melanoma [Research Papers]

The emergence of drug resistance is a major obstacle for the success of targeted therapy in melanoma. Additionally, conventional chemotherapy has not been effective as drug-resistant cells escape lethal DNA damage effects by inducing growth arrest commonly referred to as cellular dormancy. We present a therapeutic strategy termed "targeted chemotherapy" by depleting protein phosphatase 2A (PP2A) or its inhibition using a small molecule inhibitor (1,10-phenanthroline-5,6-dione [phendione]) in drug-resistant melanoma. Targeted chemotherapy induces the DNA damage response without causing DNA breaks or allowing cellular dormancy. Phendione treatment reduces tumor growth of BRAFV600E-driven melanoma patient-derived xenografts (PDX) and diminishes growth of NRASQ61R-driven melanoma, a cancer with no effective therapy. Remarkably, phendione treatment inhibits the acquisition of resistance to BRAF inhibition in BRAFV600E PDX highlighting its effectiveness in combating the advent of drug resistance.




ge

Positive autofeedback regulation of Ptf1a transcription generates the levels of PTF1A required to generate itch circuit neurons [Research Papers]

Peripheral somatosensory input is modulated in the dorsal spinal cord by a network of excitatory and inhibitory interneurons. PTF1A is a transcription factor essential in dorsal neural tube progenitors for specification of these inhibitory neurons. Thus, mechanisms regulating Ptf1a expression are key for generating neuronal circuits underlying somatosensory behaviors. Mutations targeted to distinct cis-regulatory elements for Ptf1a in mice, tested the in vivo contribution of each element individually and in combination. Mutations in an autoregulatory enhancer resulted in reduced levels of PTF1A, and reduced numbers of specific dorsal spinal cord inhibitory neurons, particularly those expressing Pdyn and Gal. Although these mutants survive postnatally, at ~3–5 wk they elicit a severe scratching phenotype. Behaviorally, the mutants have increased sensitivity to itch, but acute sensitivity to other sensory stimuli such as mechanical or thermal pain is unaffected. We demonstrate a requirement for positive transcriptional autoregulatory feedback to attain the level of the neuronal specification factor PTF1A necessary for generating correctly balanced neuronal circuits.




ge

Getting started: altering promoter choice as a mechanism for cell type differentiation [Outlook]

In this issue of Genes & Development, Lu and colleagues (pp. 663–677) have discovered a key new mechanism of alternative promoter choice that is involved in differentiation of spermatocytes. Promoter choice has strong potential as mechanism for differentiation of many different cell types.




ge

Genes & Development




ge

Therapeutic Inertia in People With Type 2 Diabetes in Primary Care: A Challenge That Just Wont Go Away

Therapeutic inertia is a prevalent problem in people with type 2 diabetes in primary care and affects clinical outcomes. It arises from a complex interplay of patient-, clinician-, and health system–related factors. Ultimately, clinical practice guidelines have not made an impact on improving glycemic targets over the past decade. A more proactive approach, including focusing on optimal combination agents for early glycemic durability, may reduce therapeutic inertia and improve clinical outcomes.




ge

Therapeutic Inertia in Pediatric Diabetes: Challenges to and Strategies for Overcoming Acceptance of the Status Quo

Despite significant advances in therapies for pediatric type 1 diabetes, achievement of glycemic targets remains elusive, and management remains burdensome for patients and their families. This article identifies common challenges in diabetes management at the patient-provider and health care system levels and proposes practical approaches to overcoming therapeutic inertia to enhance health outcomes for youth with type 1 diabetes.




ge

Management of acute COPD exacerbations in Australia: do we follow the guidelines?

Objective

We aimed to assess adherence to the Australian national guideline (COPD-X) against audited practice, and to document the outcomes of patients hospitalised with an acute exacerbation of chronic obstructive pulmonary disease (COPD) at discharge and 28 days after.

Methods

A prospective clinical audit of COPD hospital admission from five tertiary care hospitals in five states of Australia was conducted. Post-discharge follow-up was conducted via telephone to assess for readmission and health status.

Results

There were 207 admissions for acute exacerbation (171 patients; mean 70.2 years old; 50.3% males). Readmission rates at 28 days were 25.4%, with one (0.6%) death during admission and eight (6.1%) post-discharge within 28 days. Concordance to the COPD-X guidance was variable; 22.7% performed spirometry, 81.1% had blood gases collected when forced expiratory volume in 1 s was <1 L, 99.5% had chest radiography performed, 95.1% were prescribed systemic corticosteroids and 95% were prescribed antibiotic therapy. There were 89.1% given oxygen therapy and 92.6% when arterial oxygen tension was <80 mmHg; 65.6% were given ventilatory assistance when pH was <7.35. Only 32.4% were referred to pulmonary rehabilitation but 76.8% had general practitioner follow-up arranged.

Conclusion

When compared against clinical practice guidelines, we found important gaps in management of patients admitted with COPD throughout tertiary care centres in Australia. Strategies to improve guideline uptake are needed to optimise care.




ge

Survival benefit of lung transplantation compared with medical management and pulmonary rehabilitation for patients with end-stage COPD

Background

COPD patients account for a large proportion of lung transplants; lung transplantation survival benefit for COPD patients is not well established.

Methods

We identified 4521 COPD patients in the United Network for Organ Sharing (UNOS) dataset transplanted from May 2005 to August 2016, and 604 patients assigned to receive pulmonary rehabilitation and medical management in the National Emphysema Treatment Trial (NETT). After trimming the populations for NETT eligibility criteria and data completeness, 1337 UNOS and 596 NETT patients remained. Kaplan–Meier estimates of transplant-free survival from transplantation for UNOS, and NETT randomisation, were compared between propensity score-matched UNOS (n=401) and NETT (n=262) patients.

Results

In propensity-matched analyses, transplanted patients had better survival compared to medically managed patients in NETT (p=0.003). Stratifying on 6 min walk distance (6 MWD) and FEV1, UNOS patients with 6 MWD <1000 ft (~300 m) or FEV1 <20% of predicted had better survival than NETT counterparts (median survival 5.0 years UNOS versus 3.4 years NETT; log-rank p<0.0001), while UNOS patients with 6 MWD ≥1000 ft (~300 m) and FEV1 ≥20% had similar survival to NETT counterparts (median survival, 5.4 years UNOS versus 4.9 years NETT; log-rank p=0.73), interaction p=0.01.

Conclusions

Overall survival is better for matched lung transplant patients compared with medical management alone. Patients who derive maximum benefit are those with 6 MWD <1000 ft (~300 m) or FEV1 <20% of predicted, compared with pulmonary rehabilitation and medical management.




ge

Evidence from a mouse model on the dangers of thirdhand electronic cigarette exposure during early life

Electronic cigarettes (e-cigarettes) have been used in many countries for >10 years and in this time, there has been a division of opinions amongst both the general public and health professionals regarding the benefit or harms of e-cigarettes. Prior to the reporting of a new phenomenon known as vaping-associated pulmonary injury (VAPI), public opinion about the relative harm of e-cigarettes were increasing but they were perceived as less harmful than cigarettes by one third of people [1]. The recent cases of severe illness and death attributable to VAPI were first described in September 2019 [2]. VAPI appears to be related to either the addition of cannabis/cannabis derivates or vitamin E acetate [3], and as such has not caused radical swing away from the use of e-cigarettes without cannabis or cannabis derivates.




ge

The Transcriptional Aftermath in Two Independently Formed Hybrids of the Opportunistic Pathogen Candida orthopsilosis

ABSTRACT

Interspecific hybridization can drive evolutionary adaptation to novel environments. The Saccharomycotina clade of budding yeasts includes many hybrid lineages, and hybridization has been proposed as a source for new pathogenic species. Candida orthopsilosis is an emerging opportunistic pathogen for which most clinical isolates are hybrids, each derived from one of at least four independent crosses between the same two parental lineages. To gain insight into the transcriptomic aftermath of hybridization in these pathogens, we analyzed allele-specific gene expression in two independently formed hybrid strains and in a homozygous strain representative of one parental lineage. Our results show that the effect of hybridization on overall gene expression is rather limited, affecting ~4% of the genes studied. However, we identified a larger effect in terms of imbalanced allelic expression, affecting ~9.5% of the heterozygous genes in the hybrids. This effect was larger in the hybrid with more extensive loss of heterozygosity, which may indicate a tendency to avoid loss of heterozygosity in these genes. Consistently, the number of shared genes with allele-specific expression in the two independently formed hybrids was higher than random expectation, suggesting selective retention. Some of the imbalanced genes have functions related to pathogenicity, including zinc transport and superoxide dismutase activities. While it remains unclear whether the observed imbalanced genes play a role in virulence, our results suggest that differences in allele-specific expression may add an additional layer of phenotypic plasticity to traits related to virulence in C. orthopsilosis hybrids.

IMPORTANCE How new pathogens emerge is an important question that remains largely unanswered. Some emerging yeast pathogens are hybrids originated through the crossing of two different species, but how hybridization contributes to higher virulence is unclear. Here, we show that hybrids selectively retain gene regulation plasticity inherited from the two parents and that this plasticity affects genes involved in virulence.




ge

Genetic Association Reveals Protection against Recurrence of Clostridium difficile Infection with Bezlotoxumab Treatment

ABSTRACT

Bezlotoxumab is a human monoclonal antibody against Clostridium difficile toxin B, indicated to prevent recurrence of C. difficile infection (rCDI) in high-risk adults receiving antibacterial treatment for CDI. An exploratory genome-wide association study investigated whether human genetic variation influences bezlotoxumab response. DNA from 704 participants who achieved initial clinical cure in the phase 3 MODIFY I/II trials was genotyped. Single nucleotide polymorphisms (SNPs) and human leukocyte antigen (HLA) imputation were performed using IMPUTE2 and HIBAG, respectively. A joint test of genotype and genotype-by-treatment interaction in a logistic regression model was used to screen genetic variants associated with response to bezlotoxumab. The SNP rs2516513 and the HLA alleles HLA-DRB1*07:01 and HLA-DQA1*02:01, located in the extended major histocompatibility complex on chromosome 6, were associated with the reduction of rCDI in bezlotoxumab-treated participants. Carriage of a minor allele (homozygous or heterozygous) at any of the identified loci was related to a larger difference in the proportion of participants experiencing rCDI versus placebo; the effect was most prominent in the subgroup at high baseline risk for rCDI. Genotypes associated with an improved bezlotoxumab response showed no association with rCDI in the placebo cohort. These data suggest that a host-driven, immunological mechanism may impact bezlotoxumab response. Trial registration numbers are as follows: NCT01241552 (MODIFY I) and NCT01513239 (MODIFY II).

IMPORTANCE Clostridium difficile infection is associated with significant clinical morbidity and mortality; antibacterial treatments are effective, but recurrence of C. difficile infection is common. In this genome-wide association study, we explored whether host genetic variability affected treatment responses to bezlotoxumab, a human monoclonal antibody that binds C. difficile toxin B and is indicated for the prevention of recurrent C. difficile infection. Using data from the MODIFY I/II phase 3 clinical trials, we identified three genetic variants associated with reduced rates of C. difficile infection recurrence in bezlotoxumab-treated participants. The effects were most pronounced in participants at high risk of C. difficile infection recurrence. All three variants are located in the extended major histocompatibility complex on chromosome 6, suggesting the involvement of a host-driven immunological mechanism in the prevention of C. difficile infection recurrence.




ge

An Extensive Meta-Metagenomic Search Identifies SARS-CoV-2-Homologous Sequences in Pangolin Lung Viromes

ABSTRACT

In numerous instances, tracking the biological significance of a nucleic acid sequence can be augmented through the identification of environmental niches in which the sequence of interest is present. Many metagenomic data sets are now available, with deep sequencing of samples from diverse biological niches. While any individual metagenomic data set can be readily queried using web-based tools, meta-searches through all such data sets are less accessible. In this brief communication, we demonstrate such a meta-metagenomic approach, examining close matches to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in all high-throughput sequencing data sets in the NCBI Sequence Read Archive accessible with the "virome" keyword. In addition to the homology to bat coronaviruses observed in descriptions of the SARS-CoV-2 sequence (F. Wu, S. Zhao, B. Yu, Y. M. Chen, et al., Nature 579:265–269, 2020, https://doi.org/10.1038/s41586-020-2008-3; P. Zhou, X. L. Yang, X. G. Wang, B. Hu, et al., Nature 579:270–273, 2020, https://doi.org/10.1038/s41586-020-2012-7), we note a strong homology to numerous sequence reads in metavirome data sets generated from the lungs of deceased pangolins reported by Liu et al. (P. Liu, W. Chen, and J. P. Chen, Viruses 11:979, 2019, https://doi.org/10.3390/v11110979). While analysis of these reads indicates the presence of a similar viral sequence in pangolin lung, the similarity is not sufficient to either confirm or rule out a role for pangolins as an intermediate host in the recent emergence of SARS-CoV-2. In addition to the implications for SARS-CoV-2 emergence, this study illustrates the utility and limitations of meta-metagenomic search tools in effective and rapid characterization of potentially significant nucleic acid sequences.

IMPORTANCE Meta-metagenomic searches allow for high-speed, low-cost identification of potentially significant biological niches for sequences of interest.




ge

Molar element ratio analysis of lithogeochemical data: a toolbox for use in mineral exploration and mining

Molar element ratio analysis of element concentrations consists of four basic tools that provide substantial insight into the lithogeochemistry (and mineralogy) of rocks under examination. These tools consist of: (1) conserved element ratio analysis; (2) Pearce element ratio analysis; (3) general element ratio analysis; and (4) lithogeochemical mineral mode analysis. Conserved element ratio analysis is useful in creating a chemostratigraphic model for the host rocks to mineral deposits, whereas Pearce element ratio analysis and general element ratio analysis are primarily used to identify mineralogical and metasomatic controls on rock compositions and to investigate and quantify the extent of the material transfers that formed the host rocks and mineralization. Lithogeochemical mineral mode analysis converts element concentrations into mineral concentrations using a matrix-based change-of-basis operation, allowing lithogeochemical data to be interpreted in terms of mineral modes. It can be used to provide proper names to rocks, an important activity for an exploration geologist because of the implications that rock names have on genetic processes and mineral deposit models.

This paper provides a review of the theoretical foundations of each of these four tools and then illustrates how these techniques have been used in a variety of exploration applications to assist in the search for, evaluation and planning of, and the mining of mineral deposits. Examples include the evaluation of total digestion lithogeochemical datasets from mineral deposits hosted by igneous and sedimentary rocks and formed by hydrothermal and igneous processes. In addition, this paper illustrates a more recent geometallurgical application of these methods, whereby the mineral proportions determined by lithogeochemical mineral mode analysis are used to predict rock properties and obtain the ore body knowledge critical for resource evaluation, mine planning, mining and mine remediation.

Thematic collection: This article is part of the Exploration 17 collection available at: https://www.lyellcollection.org/cc/exploration-17




ge

State-of-the-art analysis of geochemical data for mineral exploration

Multi-element geochemical surveys of rocks, soils, stream/lake/floodplain sediments and regolith are typically carried out at continental, regional and local scales. The chemistry of these materials is defined by their primary mineral assemblages and their subsequent modification by comminution and weathering. Modern geochemical datasets represent a multi-dimensional geochemical space that can be studied using multivariate statistical methods from which patterns reflecting geochemical/geological processes are described (process discovery). These patterns form the basis from which probabilistic predictive maps are created (process validation). Processing geochemical survey data requires a systematic approach to effectively interpret the multi-dimensional data in a meaningful way. Problems that are typically associated with geochemical data include closure, missing values, censoring, merging, levelling different datasets and adequate spatial sample design. Recent developments in advanced multivariate analytics, geospatial analysis and mapping provide an effective framework to analyse and interpret geochemical datasets. Geochemical and geological processes can often be recognized through the use of data discovery procedures such as the application of principal component analysis. Classification and predictive procedures can be used to confirm lithological variability, alteration and mineralization. Geochemical survey data of lake/till sediments from Canada and of floodplain sediments from Australia show that predictive maps of bedrock and regolith processes can be generated. Upscaling a multivariate statistics-based prospectivity analysis for arc-related Cu–Au mineralization from a regional survey in the southern Thomson Orogen in Australia to the continental scale, reveals a number of regions with a similar (or stronger) multivariate response and hence potentially similar (or higher) mineral potential throughout Australia.

Thematic collection: This article is part of the Exploration 17 collection available at: https://www.lyellcollection.org/cc/exploration-17




ge

New developments in field-portable geochemical techniques and on-site technologies and their place in mineral exploration

This paper focuses on handheld and top-of-hole techniques which have appeared since 2007 or have undergone major improvements, and discusses their benefits, challenges and pitfalls, why we use them and what to expect from them. There is an ongoing need to be innovative with the way we undertake mineral exploration. Recent technological advances that have been applied to successful mineral exploration include on-site or portable instruments, on-site laboratory technologies, various core scanners, and technologies for fluid analysis. Portable or field technologies such as pXRF, pXRD, pNIR-SWIR, µRaman and LIBS aid in obtaining chemical and mineralogical information. Spectral gamma tools, a well-known technology, recently took advantage of improved ground and airborne (drone) instruments, to complement hyperspectral imagery. At mine and exploration sites, top-of-hole sensing technologies, such as Lab-at-Rig® and various core scanners (both spectral- and XRF-based) have become useful tools to analyse metres of core as it is being drilled. Fluid analyses are not as common as analyses of solid materials, but there are advances in such technologies as anodic stripping voltammetry, polarography and ion-exchange electrodes aiming for analysis of commodity or environmentally important elements.

Field-portable geochemical techniques and on-site technologies now offer instant response and flexibility for most exploration tasks. By providing relevant data within minutes, they allow safer field decisions and focus on the most promising finds, while saving valuable resources in sampling grids or drilling. More efficient laboratory analysis programs are supported by sample screening and homogeneity checking on-site. Field analyses are not always as accurate as laboratory ones, but most of the time can be correlated with them, enabling reliable decisions. The level of confidence in field-made decisions needs to be compared between later and less numerous laboratory analyses, and less precise but more abundant and immediate field analyses. It may be demonstrated that, in many cases, the fit–for-purpose nature of the latter allows a better confidence level. Quality compromises associated with field analyses can be reduced by the application of better sample preparation and quality assurance/quality control (QA/QC) procedures. Most of the further development of on-site chemical analysis is expected to be based on its integration with lab methods and on sound QA/QC practice, allowing a precise evaluation of its confidence level and uncertainties. Mineralogical analyses are constrained by our ability to interpret the data in near-real time but offer promising approaches in both surface and drilling exploration campaigns.

Thematic collection: This article is part of the Exploration 17 collection available at: https://www.lyellcollection.org/cc/exploration-17




ge

Advances in the use of isotopes in geochemical exploration: instrumentation and applications in understanding geochemical processes

Among the emerging techniques to detect the real footprint of buried ore deposits is isotope tracing. Novel and automated preparation systems such as continuous flow isotope ratio mass spectrometry, off-axis integrated cavity output spectroscopy for isotopic compositions of selected molecules, multi-collector inductively coupled-plasma mass spectrometry (ICP-MS), triple quadrupole ICP-MS, laser ablation ICP-MS, and a multitude of inline preparation systems have facilitated the use of isotopes as tracers in mineral exploration, as costs for isotope analyses have decreased and the time required for the analyses has improved. In addition, the isotope systems being used have expanded beyond the traditional light stable and Pb isotopes to include a multitude of elements that behave differently during processes that promote the mobilization of elements during both primary and secondary dispersion. Isotopes are also being used to understand barren areas that lack a critical process to form an ore deposit and to reveal precise redox mechanisms. The goal is to be able to use isotopes to reflect a definitive process that occurs in association with the deposit and not in barren systems, and then to relate these to something that is easier to measure, namely elemental concentrations. As new generations of exploration and environmental scientists are becoming more comfortable with the application of isotopes to effectively trace processes involved in geoscience, and new technologies for rapid and inexpensive analyses of isotopes are continually being developed, novel applications of isotope tracing are becoming more mainstream.

Thematic collection: This article is part of the Exploration 17 collection available at: https://www.lyellcollection.org/cc/exploration-17




ge

Recent advances in the application of mineral chemistry to exploration for porphyry copper-gold-molybdenum deposits: detecting the geochemical fingerprints and footprints of hypogene mineralization and alteration

In the past decade, significant research efforts have been devoted to mineral chemistry studies to assist porphyry exploration. These activities can be divided into two major fields of research: (1) porphyry indicator minerals (PIMs), which are used to identify the presence of, or potential for, porphyry-style mineralization based on the chemistry of magmatic minerals such as zircon, plagioclase and apatite, or resistate hydrothermal minerals such as magnetite; and (2) porphyry vectoring and fertility tools (PVFTs), which use the chemical compositions of hydrothermal minerals such as epidote, chlorite and alunite to predict the likely direction and distance to mineralized centres, and the potential metal endowment of a mineral district. This new generation of exploration tools has been enabled by advances in and increased access to laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), short-wave length infrared (SWIR), visible near-infrared (VNIR) and hyperspectral technologies. PIMs and PVFTs show considerable promise for exploration and are starting to be applied to the diversity of environments that host porphyry and epithermal deposits globally. Industry has consistently supported development of these tools, and in the case of PVFTs encouraged by several successful blind tests where deposit centres have successfully been predicted from distal propylitic settings. Industry adoption is steadily increasing but is restrained by a lack of the necessary analytical equipment and expertise in commercial laboratories, and also by the ongoing reliance on well-established geochemical exploration techniques (e.g. sediment, soil and rock chip sampling) that have aided the discovery of near-surface resources over many decades, but are now proving less effective in the search for deeply buried mineral resources and for those concealed under cover.

Thematic collection: This article is part of the Exploration 17 collection available at: https://www.lyellcollection.org/cc/exploration-17