l

Crystal structure and analytical profile of 1,2-di­phenyl-2-pyrrolidin-1-yl­ethanone hydro­chloride or `α-D2PV': a synthetic cathinone seized by law enforcement, along with its diluent sugar, myo-inositol

A confiscated package of street drugs was characterized by the usual mass spectral (MS) and FT–IR analyses. The confiscated powder material was highly crystalline and was found to consist of two very different species, accidentally of sizes convenient for X-ray diffraction. Thus, one each was selected and redundant com­plete sets of data were collected at 100 K using Cu Kα radiation. The selected crystals contained: (a) 1,2-diphenyl-2-(pyrrolidin-1-yl)ethanone hy­dro­chloride hemihydrate or 1-(2-oxo-1,2-di­phenyl­eth­yl)pyrrolidin-1-ium chloride hemihydrate, C18H20NO+·Cl−·0.5H2O, (I), a synthetic cathinone called `α-D2PV', and (b) the sugar myo-inositol, C6H12O6, (II), probably the only instance in which the drug and its diluent have been fully characterized from a single confiscated sample. Moreover, the structural details of both are rather attractive showing: (i) inter­esting hydrogen bonding observed in pairwise inter­actions by the drug mol­ecules, mediated by the chloride counter-anions and the waters of crystallization, and (ii) π–π inter­actions in the case of the phenyl rings of the drug which are of two different types, namely, π–π stacking and edge-to-π. Finally, the inositol crystallizes with Z' = 2 and the resulting diastereoisomers were examined by overlay techniques.




l

Using synchrotron high-resolution powder X-ray diffraction for the structure determination of a new cocrystal formed by two active principle ingredients

The crystal structure of a new 1:1 cocrystal of carbamazepine and S-naproxen (C15H12N2O·C14H14O3) was solved from powder X-ray diffraction (PXRD). The PXRD pattern was measured at the high-resolution beamline CRISTAL at synchrotron SOLEIL (France). The structure was solved using Monte Carlo simulated annealing, then refined with Rietveld refinement. The positions of the H atoms were obtained from density functional theory (DFT) ground-state calculations. The symmetry is ortho­rhom­bic with the space group P212121 (No. 19) and the following lattice parameters: a = 33.5486 (9), b = 26.4223 (6), c = 5.3651 (10) Å and V = 4755.83 (19) Å3.




l

Isostructural behaviour in ammonium and potassium salt forms of sulfonated azo dyes

The structures of five ammonium salt forms of mono­sulfonated azo dyes, derivatives of 4-(2-phenyldiazen-1-yl)benzenesulfonate, with the general formula [NH4][O3S(C6H4)NN(C6H3)RR']·XH2O [R = OH, NH2 or N(C2H4OH)2; R' = H or OH] are presented. All form simple layered structures with alternating hydro­phobic (organic) and hydro­philic (cation, solvent and polar groups) layers. To assess for isostructural behaviour of the ammonium cation with M+ ions, the packing of these structures is compared with literature examples. To aid this comparison, the corresponding structures of four potassium salt forms of the mono­sulfonated azo dyes are also presented herein. Of the five ammonium salts it is found that three have isostructural equivalents. In two cases this equivalent is a potassium salt form and in one case it is a rubidium salt form. The isostructurality of ion packing and of unit-cell symmetry and dimensions tolerates cases where the ammonium ions form somewhat different inter­action types with coformer species than do the potassium or rubidium ions. No sodium salt forms are found to be isostructural with any ammonium equivalent. However, similarities in the anion packing within a single hydro­phobic layer are found for a group that consists of the ammonium and rubidium salt forms of one azo anion species and the sodium and silver salt forms of a different azo species.




l

Structure and absolute configuration of natural fungal product beauveriolide I, isolated from Cordyceps javanica, determined by 3D electron diffraction

Beauveriolides, including the main beauveriolide I {systematic name: (3R,6S,9S,13S)-9-benzyl-13-[(2S)-hexan-2-yl]-6-methyl-3-(2-methyl­prop­yl)-1-oxa-4,7,10-tri­aza­cyclo­tridecane-2,5,8,11-tetrone, C27H41N3O5}, are a series of cyclo­depsipeptides that have shown promising results in the treatment of Alzheimer's disease and in the prevention of foam cell formation in atherosclerosis. Their crystal structure studies have been difficult due to their tiny crystal size and fibre-like morphology, until now. Recent developments in 3D electron diffraction methodology have made it possible to accurately study the crystal structures of submicron crystals by overcoming the problems of beam sensitivity and dynamical scattering. In this study, the absolute structure of beauveriolide I was determined by 3D electron diffraction. The cyclo­dep­si­peptide crystallizes in the space group I2 with lattice parameters a = 40.2744 (4), b = 5.0976 (5), c = 27.698 (4) Å and β = 105.729 (6)°. After dynamical refinement, its absolute structure was determined by comparing the R factors and calculating the z-scores of the two possible enanti­omorphs of beauveriolide I.




l

Synthesis, crystal structure and in-silico evaluation of aryl­sul­fon­amide Schiff bases for potential activity against colon cancer

This report presents a comprehensive investigation into the synthesis and characterization of Schiff base com­pounds derived from benzene­sul­fon­amide. The synthesis process, involved the reaction between N-cyclo­amino-2-sulf­anil­amide and various substituted o-salicyl­aldehydes, resulted in a set of com­pounds that were subjected to rigorous characterization using advanced spectral techniques, including 1H NMR, 13C NMR and FT–IR spectroscopy, and single-crystal X-ray diffraction. Furthermore, an in-depth assessment of the synthesized com­pounds was conducted through Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) analysis, in conjunction with docking studies, to elucidate their pharmacokinetic profiles and potential. Impressively, the ADMET analysis showcased encouraging drug-likeness properties of the newly synthesized Schiff bases. These computational findings were substanti­ated by mol­ecular properties derived from density functional theory (DFT) calculations using the B3LYP/6-31G* method within the Jaguar Module of Schrödinger 2023-2 from Maestro (Schrodinger LLC, New York, USA). The ex­plor­ation of frontier mol­ecular orbitals (HOMO and LUMO) enabled the computation of global reactivity descriptors (GRDs), encompassing charge separation (Egap) and global softness (S). Notably, within this analysis, one Schiff base, namely, 4-bromo-2-{N-[2-(pyr­rol­idine-1-sul­fonyl)phenyl]car­box­imid­oyl}phenol, 20, em­erged with the smallest charge separation (ΔEgap = 3.5780 eV), signifying heightened potential for biological properties. Conversely, 4-bromo-2-{N-[2-(piper­idine-1-sul­fonyl)phenyl]car­box­imid­oyl}phenol, 17, exhibited the largest charge separation (ΔEgap = 4.9242 eV), implying a relatively lower propensity for biological activity. Moreover, the synthesized Schiff bases displayed re­marke­able inhibition of tankyrase poly(ADP-ribose) polymerase enzymes, integral in colon cancer, surpassing the efficacy of a standard drug used for the same purpose. Additionally, their bioavailability scores aligned closely with established medications such as trifluridine and 5-fluoro­uracil. The ex­plor­ation of mol­ecular electrostatic potential through colour mapping delved into the electronic behaviour and reactivity tendencies intrinsic to this diverse range of mol­ecules.




l

Absolute structure determination of Berkecoumarin by X-ray and electron diffraction

X-ray and electron diffraction methods independently identify the S-enanti­omer of Berkecoumarin [systematic name: (S)-8-hy­droxy-3-(2-hy­droxy­prop­yl)-6-meth­oxy-2H-chromen-2-one]. Isolated from Berkeley Pit Lake Penicillium sp., Berkecoumarin is a natural product with a light-atom com­position (C13H14O5) that challenges in-house absolute structure determination by anomalous scattering. This study further demonstrates the utility of dynamical refinement of electron-diffraction data for absolute structure determination.




l

Borotropic shifting of the hydro­tris­[3-(2-furyl)pyrazol-1-yl]borate ligand in high-coordinate lan­tha­nide com­plexes

The coordination of hydro­tris­[3-(2-furyl)pyrazol-1-yl]borate (Tp2-Fu, C21H16BN6O3) to lan­tha­nide(III) ions is achieved for the first time with the com­plex [Ln(Tp2-Fu)2](BPh4)·xCH2Cl2 (1-Ln has Ln = Ce and x = 2; 1-Dy has Ln = Dy and x = 1). This was accom­plished via both hydrous (Ln = Ce) and anhydrous methods (Ln = Dy). When isolating the dysprosium analogue, the filtrate produced a second crop of crystals which were revealed to be the 1,2-borotropic-shifted product [Dy(κ4-Tp2-Fu)(κ5-Tp2-Fu*)](BPh4) (2) {Tp2-Fu* = hydro­bis­[3-(2-furyl)pyrazol-1-yl][5-(2-furyl)pyrazol-1-yl]borate}. We con­clude that the pres­ence of a strong Lewis acid and a sterically crowded coordination environment are contributing factors for the 1,2-borotropic shifting of scorpionate ligands in conjunction with the size of the conical angle with the scorpionate ligand.




l

Relationship between synthesis method–crystal structure–melting properties in co­crystals: the case of caffeine–citric acid

The influence of the crystal synthesis method on the crystallographic structure of caffeine–citric acid co­crystals was analyzed thanks to the synthesis of a new polymorphic form of the cocrystal. In order to com­pare the new form to the already known forms, the crystal structure of the new cocrystal (C8H10N4O2·C6H8O7) was solved by powder X-ray diffraction thanks to synchrotron experiments. The structure determination was performed using `GALLOP', a recently developed hybrid approach based on a local optimization with a particle swarm optimizer, particularly powerful when applied to the structure resolution of materials of pharmaceutical inter­est, com­pared to classical Monte-Carlo simulated annealing. The final structure was obtained through Rietveld refinement, and first-principles density functional theory (DFT) calculations were used to locate the H atoms. The symmetry is triclinic with the space group Poverline{1} and contains one mol­ecule of caffeine and one mol­ecule of citric acid per asymmetric unit. The crystallographic structure of this cocrystal involves different hydrogen-bond associations com­pared to the already known structures. The analysis of these hydrogen bonds indicates that the cocrystal obtained here is less stable than the co­crystals already identified in the literature. This analysis is confirmed by the determination of the melting point of this cocrystal, which is lower than that of the previously known co­crystals.




l

Crystal structures, electron spin resonance, and thermogravimetric analysis of three mixed-valence copper cyanide polymers

The crystal structures of three mixed-valence copper cyanide alkanolamine polymers are presented, together with thermogravimetric analysis (TGA) and electron spin resonance (ESR) data. In all three structures, a CuII moiety on a crystallographic center of symmetry is coordinated by two alkanolamines and links two CuICN chains via cyanide bridging groups to form diperiodic sheets. The sheets are linked together by cuprophilic CuI–CuI inter­actions to form a three-dimensional network. In poly[bis­(μ-3-amino­propano­lato)tetra-μ-cyan­ido-dicopper(I)dicopper(II)], [Cu4(CN)4(C3H8NO)2]n, 1, propano­lamine bases have lost their hydroxyl H atoms and coordinate as chelates to two CuII atoms to form a dimeric CuII moiety bridged by the O atoms of the bases with CuII atoms in square-planar coordination. The ESR spectrum is very broad, indicating exchange between the two CuII centers. In poly[bis­(2-amino­pro­pan­ol)tetra-μ-cyanido-dicopper(I)copper(II)], [Cu3(CN)4(C3H9NO)2]n, 2, and poly[bis­(2-amino­ethanol)tetra-μ-cyanido-dicopper(I)copper(II)], [Cu3(CN)4(CH7NO)2]n, 3, a single CuII atom links the CuICN chains together via CN bridges. The chelating alkanolamines are not ionized, and the OH groups form rather long bonds in the axial positions of the octa­hedrally coordinated CuII atoms. The coordination geometries of CuII in 2 and 3 are almost identical, except that the Cu—O distances are longer in 2 than in 3, which may explain their somewhat different ESR spectra. Thermal decom­position in 2 and 3, but not in 1, begins with the loss of HCN(g), and this can be correlated with the presence of OH protons on the ligands in 2 and 3, which are not present in 1.




l

Mol­ecular structure and selective theophylline com­plexation by conformational change of diethyl N,N'-(1,3-phenyl­ene)dicarbamate

The receptor ability of diethyl N,N'-(1,3-phenyl­ene)dicarbamate (1) to form host–guest com­plexes with theophylline (TEO) and caffeine (CAF) by mechanochemistry was evaluated. The formation of the 1–TEO com­plex (C12H16N2O4·C7H8N4O2) was preferred and involves the conformational change of one of the ethyl carbamate groups of 1 from the endo conformation to the exo conformation to allow the formation of inter­molecular inter­actions. The formation of an N—H⋯O=C hydrogen bond between 1 and TEO triggers the conformational change of 1. CAF mol­ecules are unable to form an N—H⋯O=C hydrogen bond with 1, making the conformational change and, therefore, the formation of the com­plex impossible. Conformational change and selective binding were monitored by IR spectroscopy, solid-state 13C nuclear magnetic resonance and single-crystal X-ray diffraction. The 1–TEO com­plex was characterized by IR spectroscopy, solid-state 13C nuclear magnetic resonance, powder X-ray diffraction and single-crystal X-ray diffraction.




l

Rebuttal to the article Pathological crystal structures

A section in the Acta Crystallographica Section C article by Raymond & Girolami [Acta Cryst. (2023), C79, 445–455] stated that the product of the reaction of [(Cp*Rh)2(μ-OH)3]+ (Cp* is 1,2,3,4,5-penta­methyl­cyclo­penta­diene) with 1-methyl­thymine (1-MT) at pH 10 and 60 °C, to synthesize the anionic com­ponent [RhI(η1-N3-1-MT)2]−, was not an RhI com­plex, but rather an AgI com­plex, due to the use of silver triflate (AgOTf) to remove Cl− from [Cp*RhCl2]2 to synthesize [Cp*Rh(H2O)3](OTf)2, a water-soluble crystalline com­plex. We will clearly show that this premise, as stated, is invalid, while the authors have simply avoided several important facts, including that Cp*OH, a reductive elimination product, at pH 10 and 60 °C, was unequivocally identified, thus leading to the RhI anionic com­ponent [RhI(η1-N3-1-MT)2]−. More importantly, AgOH, from the reaction of NaOH at pH 10 with any potentially remaining AgOTf, after the AgCl was filtered off, would be insoluble in water. Furthermore, a control experiment with the inorganic com­plex Rh(OH)3, reacting with 1-methyl­thymine at pH 10, provided no product, and this bodes well for a similar fate with AgOTf and 1-methyl­thymine, i.e. at pH 10, AgOTf would again be converted to the water-insoluble AgOH; therefore, no reaction would occur! Finally, a 1H NMR spectroscopy experiment was carried out with synthesized and crystallized [Cp*Rh(H2O)3](OTf)2 in D2O at various pD values; at pD 8.65 no reaction took place, while at pD 13.6, and at 60 °C for 2 h, a reductive elimination reaction caused the precipitation of Cp*OH. The subsequent 1H NMR spectrum clearly demonstrated, in the absence of any AgI com­plexes, that the solution structure and the X-ray crystals in D2O were similar. A postulated mechanism for this novel anionic com­ponent structure, as published previously [Smith et al. (2014). Organometallics, 33, 2389–2404], will be presented, along with the experimental data, to insure the credibility of our results. We will also answer the comments in the response of Drs Raymond and Girolami to this rebuttal.




l

Response to the rebuttal of the article Pathological crystal structures

We stand fully behind our earlier suggestion [Raymond & Girolami (2023). Acta Cryst. C79, 445–455] that the claim by Fish and co-workers [Chen et al. (1995). J. Am. Chem. Soc. 117, 9097–9098; Smith et al. (2014). Organometallics, 33, 2389–2404] of a linear two-coordinate rhodium(I) species is incorrect, and that the putative rhodium atom is in fact silver.




l

Applying 3D ED/MicroED workflows toward the next frontiers

We report on the latest advancements in Microcrystal Electron Diffraction (3D ED/MicroED), as discussed during a symposium at the National Center for CryoEM Access and Training housed at the New York Structural Biology Center. This snapshot describes cutting-edge developments in various facets of the field and identifies potential avenues for continued progress. Key sections discuss instrumentation access, research applications for small mol­ecules and biomacromolecules, data collection hardware and software, data reduction software, and finally reporting and validation. 3D ED/MicroED is still early in its wide adoption by the structural science community with ample opportunities for expansion, growth, and innovation.




l

Formation of extended polyiodides at large cation templates

By studying the structures of (μ-1,4,10,13-tetra­thia-7,16-di­aza­cyclo­octa­deca­ne)bis[iodidopalladium(II)] diiodide penta­(diiodine), [Pd2I2(C12H26N2S4)](I)2·5I2 or [Pd2I2([18]aneN2S4)](I)2·(I2)5, and 4,7,13,16,21,24-hexa­oxa-1,10-diazo­niabi­cyclo­[8.8.8]hexa­cosane triiodide iodide hemi­penta­(diiodine) di­chloro­methane mono­solvate, C18H38N2O62+·I3−·I−·2.5I2·CH2Cl2 or [H2([2.2.2]cryptand)](I3)(I)(I2)2.5·CH2Cl2, we confirm the structural variety of extended polyiodides achievable upon changing the shape, charge and dimensions of the cation template, by altering the synthetic strategy adopted and/or the experimental conditions. Although it is still often difficult to characterize discrete [I2m+n]n− polyiodides higher than I3− on the basis of structural parameters, such as I—I bond distances, FT–Raman spectroscopy appears to identify them as aggregates of I2, I− and (symmetric or slightly asymmetric) I3− building blocks linked by I⋯I inter­actions of varying strengths. However, because FT–Raman spectroscopy carries no information about the topological features of extended polyiodides, the two techniques should therefore be applied in combination to enhance the analysis of this kind of compounds.




l

Synthesis, characterization and structural analysis of com­plexes from 2,2':6',2''-terpyridine derivatives with transition metals

The synthesis and structural characterization of three families of coordination com­plexes synthesized from 4'-phenyl-2,2':6',2''-terpyridine (8, Ph-TPY), 4'-(4-chloro­phen­yl)-2,2':6',2''-terpyridine (9, ClPh-TPY) and 4'-(4-meth­oxy­phen­yl)-2,2':6',2''-terpyridine (10, MeOPh-TPY) ligands with the divalent metals Co2+, Fe2+, Mn2+ and Ni2+ are reported. The com­pounds were synthesized from a 1:2 mixture of the metal and ligand, resulting in a series of com­plexes with the general formula [M(R-TPY)2](ClO4)2 (where M = Co2+, Fe2+, Mn2+ and Ni2+, and R-TPY = Ph-TPY, ClPh-TPY and MeOPh-TPY). The general formula and structural and supra­molecular features were determinated by single-crystal X-ray diffraction for bis­(4'-phenyl-2,2':6',2''-terpyridine)­nickel(II) bis­(per­chlo­rate), [Ni(C21H15N3)2](ClO4)2 or [Ni(Ph-TPY)2](ClO4)2, bis­[4'-(4-meth­oxy­phen­yl)-2,2':6',2''-terpyridine]­manganese(II) bis­(per­chlo­rate), [Mn(C22H17N3O)2](ClO4)2 or [Mn(MeOPh-TPY)2](ClO4)2, and bis­(4'-phenyl-2,2':6',2''-ter­py­ridine)­manganese(II) bis­(per­chlo­rate), [Mn(C21H15N3)2](ClO4)2 or [Mn(Ph-TPY)2](ClO4)2. In all three cases, the com­plexes present distorted octa­hedral coordination polyhedra and the crystal packing is determined mainly by weak C—H⋯π inter­actions. All the com­pounds (except for the Ni derivatives, for which FT–IR, UV–Vis and thermal analysis are reported) were fully characterized by spectroscopic (FT–IR, UV–Vis and NMR spectroscopy) and thermal (TGA–DSC, thermogravimetric analysis–differential scanning calorimetry) methods.




l

Supra­molecular hy­dro­gen-bonded networks formed from copper(II) car­box­yl­ate dimers

The well-known copper car­box­yl­ate dimer, with four car­box­yl­ate ligands ex­ten­ding outwards towards the corners of a square, has been employed to generate a series of crystalline com­pounds. In particular, this work centres on the use of the 4-hy­droxy­benzoate anion (Hhba−) and its deprotonated phe­nol­ate form 4-oxidobenzoate (hba2−) to obtain complexes with the general formula [Cu2(Hhba)4–x(hba)xL2–y]x−, where L is an axial coligand (including solvent mol­ecules), x = 0, 1 or 2, and y = 0 or 1. In some cases, short hy­dro­gen bonds result in complexes which may be represented as [Cu2(Hhba)2(H0.5hba)2L2]−. The main focus of the investigation is on the formation of a variety of extended networks through hy­dro­gen bonding and, in some crystals, coordinate bonds when bridging coligands (L) are employed. Crystals of [Cu2(Hhba)4(di­ox­ane)2]·4(di­ox­ane) consist of the expected Cu dimer with the Hhba− anions forming hy­dro­gen bonds to 1,4-di­ox­ane mol­ecules which block network formation. In the case of crystals of com­position [Et4N][Cu2(Hhba)2(H0.5hba)2(CH3OH)(H2O)]·2(di­ox­ane), Li[Cu2(Hhba)2(H0.5hba)2(H2O)2]·3(di­ox­ane)·4H2O and [Cu2(Hhba)2(H0.5hba)2(H0.5DABCO)2]·3CH3OH (DABCO is 1,4-di­aza­bicyclo­[2.2.2]octa­ne), square-grid hy­dro­gen-bonded networks are generated in which the complex serves as one type of 4-con­necting node, whilst a second 4-con­necting node is a hy­dro­gen-bonding motif assembled from four phenol/phenolate groups. Another two-dimensional (2D) network based upon a related square-grid structure is formed in the case of [Et4N]2[Cu2(Hhba)2(hba)2(di­ox­ane)2][Cu2(Hhba)4(di­ox­ane)(H2O)]·CH3OH. In [Cu2(Hhba)4(H2O)2]·2(Et4NNO3), a square-grid structure is again apparent, but, in this case, a pair of nitrate anions, along with four phenolic groups and a pair of water mol­ecules, combine to form a second type of 4-con­necting node. When 1,8-bis­(di­methyl­amino)­naphthalene (bdn, `proton sponge') is used as a base, another square-grid network is generated, i.e. [Hbdn]2[Cu2(Hhba)2(hba)2(H2O)2]·3(di­ox­ane)·H2O, but with only the copper dimer complex serving as a 4-con­necting node. Complex three-dimensional networks are formed in [Cu2(Hhba)4(O-bipy)]·H2O and [Cu2(Hhba)4(O-bipy)2]·2(di­ox­ane), where the potentially bridging 4,4'-bi­pyridine N,N'-dioxide (O-bipy) ligand is employed. Rare cases of mixed car­box­yl­ate copper dimer complexes were obtained in the cases of [Cu2(Hhba)3(OAc)(di­ox­ane)]·3.5(di­ox­ane) and [Cu2(Hhba)2(OAc)2(DABCO)2]·10(di­ox­ane), with each structure possessing a 2D network structure. The final com­pound re­por­ted is a simple hy­dro­gen-bonded chain of com­position (H0.5DABCO)(H1.5hba), formed from the reaction of H2hba and DABCO.




l

Using cocrystals as a tool to study non-crystallizing mol­ecules: crystal structure, Hirshfeld surface analysis and com­putational study of the 1:1 cocrystal of (E)-N-(3,4-di­fluoro­phen­yl)-1-(pyridin-4-yl)methanimine and acetic

Using a 1:1 cocrystal of (E)-N-(3,4-di­fluoro­phen­yl)-1-(pyridin-4-yl)methanimine with acetic acid, C12H8F2N2·C2H4O2, we investigate the influence of F atoms introduced to the aromatic ring on promoting π–π inter­actions. The cocrystal crystallizes in the triclinic space group P1. Through crystallographic analysis and com­putational studies, we reveal the mol­ecular arrangement within this co­crystal, demonstrating the presence of hydrogen bonding between the acetic acid mol­ecule and the pyridyl group, along with π–π inter­actions between the aromatic rings. Our findings highlight the importance of F atoms in promoting π–π inter­actions without necessitating full halogenation of the aromatic ring.




l

Crystal structure elucidation of a geminal and vicinal bis­(tri­fluoro­methane­sulfonate) ester

Geminal and vicinal bis­(tri­fluoro­methane­sulfonate) esters are highly reactive alkyl­ene synthons used as potent electrophiles in the macrocyclization of imid­azoles and the transformation of bypyridines to diquat derivatives via nucleophilic substitution reactions. Herein we report the crystal structures of methyl­ene (C3H2F6O6S2) and ethyl­ene bis­(tri­fluoro­methane­sulfonate) (C4H4F6O6S2), the first examples of a geminal and vicinal bis­(tri­fluoro­methane­sulfonate) ester characterized by single-crystal X-ray diffraction (SC-XRD). With melting points slightly below ambient temperature, both reported bis­(tri­fluoro­methane­sulfonate)s are air- and moisture-sensitive oils and were crys­tallized at 277 K to afford two-com­ponent non-merohedrally twinned crystals. The dominant inter­actions present in both com­pounds are non-classical C—H⋯O hydrogen bonds and inter­molecular C—F⋯F—C inter­actions between tri­fluoro­methyl groups. Mol­ecular electrostatic potential (MEP) cal­culations by DFT-D3 helped to qu­antify the polarity between O⋯H and F⋯F contacts to rationalize the self-sorting of both bis­(tri­fluoro­methane­sulfonate) esters in polar (non-fluorous) and non-polar (fluorous) domains within the crystal structure.




l

Data collection is your last experiment




l

TAAM refinement on high-resolution experimental and simulated 3D ED/MicroED data for organic mol­ecules

3D electron diffraction (3D ED), or microcrystal electron diffraction (MicroED), has become an alternative technique for determining the high-resolution crystal structures of compounds from sub-micron-sized crystals. Here, we considered l-alanine, α-glycine and urea, which are known to form good-quality crystals, and collected high-resolution 3D ED data on our in-house TEM instrument. In this study, we present a comparison of independent atom model (IAM) and transferable aspherical atom model (TAAM) kinematical refinement against experimental and simulated data. TAAM refinement on both experimental and simulated data clearly improves the model fitting statistics (R factors and residual electrostatic potential) compared to IAM refinement. This shows that TAAM better represents the experimental electrostatic potential of organic crystals than IAM. Furthermore, we compared the geometrical parameters and atomic displacement parameters (ADPs) resulting from the experimental refinements with the simulated refinements, with the periodic density functional theory (DFT) calculations and with published X-ray and neutron crystal structures. The TAAM refinements on the 3D ED data did not improve the accuracy of the bond lengths between the non-H atoms. The experimental 3D ED data provided more accurate H-atom positions than the IAM refinements on the X-ray diffraction data. The IAM refinements against 3D ED data had a tendency to lead to slightly longer X—H bond lengths than TAAM, but the difference was statistically insignificant. Atomic displacement parameters were too large by tens of percent for l-alanine and α-glycine. Most probably, other unmodelled effects were causing this behaviour, such as radiation damage or dynamical scattering.




l

The crystal structure of the ammonium salt of 2-amino­malonic acid

The salt ammonium 2-am­ino­mal­on­ate (systematic name: ammonium 2-aza­niumyl­propane­dioate), NH4+·C3H4NO4−, was synthesized in diethyl ether from the starting materials malonic acid, ammonia and bromine. The salt was recrystallized from water as colourless blocks. In the solid state, intra­molecular medium–strong N—H⋯O, weak C—H⋯O and weak C—H⋯N hydrogen bonds build a three-dimensional network.




l

Crystal structure and cryomagnetic study of a mononuclear erbium(III) ox­am­ate inclusion com­plex

The synthesis, crystal structure and magnetic properties of an ox­am­ate-con­taining erbium(III) com­plex, namely, tetra­butyl­ammonium aqua­[N-(2,4,6-tri­methyl­phen­yl)oxamato]erbium(III)–di­methyl sulfoxide–water (1/3/1.5), (C16H36N)[Er(C11H12NO3)4(H2O)]·3C2H6OS·1.5H2O or n-Bu4N[Er(Htmpa)4(H2O)]·3DMSO·1.5H2O (1), are reported. The crystal structure of 1 reveals the occurrence of an erbium(III) ion, which is surrounded by four N-phenyl-substituted ox­am­ate ligands and one water mol­ecule in a nine-coordinated environment, together with one tetra­butyl­ammonium cation acting as a counter-ion, and one water and three dimethyl sulfoxide (DMSO) mol­ecules of crystallization. Variable-temperature static (dc) and dynamic (ac) magnetic mea­sure­ments were carried out for this mononuclear com­plex, revealing that it behaves as a field-induced single-ion magnet (SIM) below 5.0 K.




l

Synthesis, spectroscopic and crystallographic characterization of various cymantrenyl thio­ethers [Mn{C5HxBry(SMe)z}(PPh3)(CO)2]

Starting from [Mn(C5H4Br)(PPh3)(CO)2] (1a), the cymantrenyl thio­ethers [Mn(C5H4SMe)(PPh3)(CO)2] (1b) and [Mn{C5H4–nBr(SMe)n}(PPh3)(CO)2] (n = 1 for com­pound 2, n = 2 for 3 and n = 3 for 4) were obtained, using either n-butyllithium (n-BuLi), lithium diiso­propyl­amide (LDA) or lithium tetra­methyl­piperidide (LiTMP) as base, followed by electrophilic quenching with MeSSMe. Stepwise consecutive reaction of [Mn(C5Br5)(PPh3)(CO)2] with n-BuLi and MeSSMe led finally to [Mn{C5(SMe)5}(PPh3)(CO)2] (11), only the fifth com­plex to be reported containing a perthiol­ated cyclo­penta­dienyl ring. The mol­ecular and crystal structures of 1b, 3, 4 and 11 were determined and were studied for the occurrence of S⋯S and S⋯Br inter­actions. It turned out that although some inter­actions of this type occurred, they were of minor importance for the arrangement of the mol­ecules in the crystal.




l

Crystal structure of the cytotoxic macrocyclic trichothecene Isororidin A

The highly cytotoxic macrocyclic trichothecene Isororidin A (C29H40O9) was isolated from the fungus Myrothesium verrucaria endophytic on the wild medicinal plant `Datura' (Datura stramonium L.) and was characterized by one- (1D) and two-dimensional (2D) NMR spectroscopy. The three-dimensional structure of Isororidin A has been confirmed by X-ray crystallography at 0.81 Å resolution from crystals grown in the ortho­rhom­bic space group P212121, with one mol­ecule per asymmetric unit. Isororidin A is the epimer of previously described (by X-ray crystallography) Roridin A at position C-13' of the macrocyclic ring.




l

3-[(Benzo-1,3-dioxol-5-yl)amino]-4-meth­oxy­cyclo­but-3-ene-1,2-dione: polymorphism and twinning of a precursor to an anti­mycobacterial squaramide

The title compound, 3-[(benzo-1,3-dioxol-5-yl)amino]-4-meth­oxy­cyclo­but-3-ene-1,2-dione, C12H9NO5 (3), is a precursor to an anti­mycobacterial squaramide. Block-shaped crystals of a monoclinic form (3-I, space group P21/c, Z = 8, Z' = 2) and needle-shaped crystals of a triclinic form (3-II, space group P-1, Z = 4, Z' = 2) were found to crystallize concomitantly. In both crystal forms, R22(10) dimers assemble through N—H⋯O=C hydrogen bonds. These dimers are formed from crystallographically unique mol­ecules in 3-I, but exhibit crystallographic Ci symmetry in 3-II. Twinning by pseudomerohedry was encountered in the crystals of 3-II. The conformations of 3 in the solid forms 3-I and 3-II are different from one another but are similar for the unique mol­ecules in each polymorph. Density functional theory (DFT) calculations on the free mol­ecule of 3 indicate that a nearly planar conformation is preferred.




l

How to grow crystals for X-ray crystallography

Growing high-quality crystals remains a necessary part of crystallography and many other techniques. This article tabulates and describes several techniques and variations that will help individuals grow high-quality crystals in preparation for crystallographic techniques and other endeavors, such as form screening. The discussion is organized to focus on low-tech approaches available in any laboratory.




l

A brief review on com­puter simulations of chal­co­py­rite surfaces: structure and reactivity

Chalcopyrite, the world's primary copper ore mineral, is abundant in Latin America. Copper extraction offers significant economic and social benefits due to its strategic importance across various industries. However, the hydro­metallurgical route, considered more environmentally friendly for processing low-grade chal­co­py­rite ores, remains challenging, as does its concentration by froth flotation. This limited understanding stems from the poorly understood structure and reactivity of chal­co­py­rite surfaces. This study reviews recent contributions using density functional theory (DFT) calculations with periodic boundary conditions and slab models to elucidate chal­co­py­rite surface properties. Our analysis reveals that reconstructed surfaces preferentially expose S atoms at the topmost layer. Furthermore, some studies report the formation of di­sulfide groups (S22−) on pristine sulfur-terminated surfaces, accom­panied by the reduction of Fe3+ to Fe2+, likely due to surface oxidation. Additionally, Fe sites are consistently identified as favourable adsorption locations for both oxygen (O2) and water (H2O) mol­ecules. Finally, the potential of com­puter modelling for investigating collector–chal­co­py­rite surface inter­actions in the context of selective froth flotation is discussed, highlighting the need for further research in this area.




l

Concerning the structures of Lewis base adducts of titanium(IV) hexa­fluoro­iso­pro­pox­ide

The reaction of titanium(IV) chloride with sodium hexa­fluoro­iso­pro­pox­ide, carried out in hexa­fluoro­iso­propanol, produces titanium(IV) hexa­fluoro­iso­pro­pox­ide, which is a liquid at room temperature. Recrystallization from coordinating solvents, such as aceto­nitrile or tetra­hydro­furan, results in the formation of bis-solvate com­plexes. These com­pounds are of inter­est as possible Ziegler–Natta polymerization catalysts. The aceto­nitrile com­plex had been structurally characterized previously and adopts a distorted octahedral structure in which the nitrile ligands adopt a cis configuration, with nitro­gen lone pairs coordinated to the metal. The low-melting tetra­hydro­furan com­plex has not provided crystals suitable for single-crystal X-ray analysis. However, the structure of chlorido­tris­(hexa­fluoro­isopropoxido-κO)bis­(tetra­hydro­furan-κO)titanium(IV), [Ti(C3HF6O)3Cl(C4H8O)2], has been obtained and adopts a distorted octa­hedral coordination geometry, with a facial arrangement of the alkoxide ligands and adjacent tetra­hydro­furan ligands, coordinated by way of metal–oxygen polar coordinate inter­actions.




l

Synthesis of organotin(IV) heterocycles containing a xanthenyl group by a Barbier approach via ultrasound activation: synthesis, crystal structure and Hirshfeld surface analysis

A series of organotin heterocycles of general formula [{Me2C(C6H3CH2)2O}SnR2] [R = methyl (Me, 4), n-butyl (n-Bu, 5), benzyl (Bn, 6) and phenyl (Ph, 7)] was easily synthesized by a Barbier-type reaction assisted by the sonochemical activation of metallic magnesium. The 119Sn{1H} NMR data for all four com­pounds confirm the presence of a central Sn atom in a four-coordinated environment in solution. Single-crystal X-ray diffraction studies for 17,17-dimethyl-7,7-di­phenyl-15-oxa-7-stanna­tetra­cyclo­[11.3.1.05,16.09,14]hepta­deca-1,3,5(16),9(14),10,12-hexa­­ene, [Sn(C6H5)2(C17H16O)], 7, at 100 and 295 K con­firmed the formation of a mono­nuclear eight-membered heterocycle, with a conformation depicted as boat–chair, resulting in a weak Sn⋯O inter­action. The Sn and O atoms are surrounded by hydro­phobic C—H bonds. A Hirshfeld surface analysis of 7 showed that the eight-membered heterocycles are linked by weak C—H⋯π, π–π and H⋯H noncovalent inter­actions. The pairwise inter­action energies showed that the cohesion between the heterocycles are mainly due to dispersion forces.




l

The influence of the axial group on the crystal structures of boron sub­phthalo­cy­an­ines

The crystal structures of 16 boron sub­phthalo­cy­an­ines (BsubPcs) with structurally diverse axial groups were analyzed and com­pared to elucidate the impact of the axial group on the inter­molecular π–π inter­actions, axial-group inter­actions, axial bond length and BsubPc bowl depth. π–π inter­actions between the iso­indole units of adjacent BsubPc mol­ecules most often involve concave–concave packing, whereas axial-group inter­actions with adjacent BsubPc mol­ecules tend to favour the convex side of the BsubPc bowl. Furthermore, axial groups that contain O and/or F atoms tend to have significant hy­dro­gen-bonding inter­actions, while axial groups containing arene site(s) can participate in π–π inter­actions with the BsubPc bowl, both of which can strongly influence the crystal packing. Bulky axial groups did tend to disrupt the π–π inter­actions and/or axial-group inter­actions, preventing some of the close packing that is seen in BsubPcs with less bulky axial groups. The atomic radius of the heteroatom bonded to boron directly influences the axial bond length, whereas the axial group has minimal impact on the BsubPc bowl depth. Finally, the crystal growth method did not generally appear to have a significant impact on the solid-state arrangement, with the exception of water occasionally being incorporated into crystal structures when hygroscopic solvents were used. These insights can help with the design and fine-tuning of the solid-state structures of BsubPcs as they continue to be developed as functional materials in organic electronics.




l

Occupational modulation in the (3+1)-dimensional incommensurate structure of (2S,3S)-2-amino-3-hy­droxy-3-methyl-4-phen­oxy­butanoic acid dihydrate

The incommensurately modulated structure of (2S,3S)-2-amino-3-hy­droxy-3-methyl-4-phen­oxy­butanoic acid dihydrate (C11H15NO4·2H2O or I·2H2O) is described in the (3+1)-dimensional superspace group P212121(0β0)000 (β = 0.357). The loss of the three-dimensional periodicity is ascribed to the occupational modulation of one positionally disordered solvent water mol­ecule, where the two positions are related by a small translation [ca 0.666 (9) Å] and ∼168 (5)° rotation about one of its O—H bonds, with an average 0.624 (3):0.376 (3) occupancy ratio. The occupational modulation of this mol­ecule arises due to the com­petition between the different hy­dro­gen-bonding motifs associated with each position. The structure can be very well refined in the average approximation (all satellite reflections disregarded) in the space group P212121, with the water mol­ecule refined as disordered over two positions in a 0.625 (16):0.375 (16) ratio. The refinement in the commensurate threefold supercell approximation in the space group P1121 is also of high quality, with the six corresponding water mol­ecules exhibiting three different occupancy ratios averaging 0.635:0.365.




l

Further evaluation of the shape of atomic Hirshfeld surfaces: M⋯H contacts and homoatomic bonds

It is well known that Hirshfeld surfaces provide an easy and straightforward way of analysing inter­molecular inter­actions in the crystal environment. The use of atomic Hirshfeld surfaces has also demonstrated that such surfaces carry information related to chemical bonds which allow a deeper evaluation of the structures. Here we briefly summarize the approach of atomic Hirshfeld surfaces while further evaluating the kind of information that can be retrieved from them. We show that the analysis of the metal-centre Hirshfeld surfaces from structures refined via Hirshfeld Atom Refinement (HAR) allow accurate evaluation of contacts of type M⋯H, and that such contacts can be related to the overall shape of the surfaces. The com­pounds analysed were tetra­aqua­bis­(3-carb­oxy­propionato)metal(II), [M(C4H3O4)2(H2O)4], for metal(II)/M = manganese/Mn, cobalt/Co, nickel/Ni and zinc/Zn. We also evaluate the sensitivity of the surfaces by an investigation of seemingly flat surfaces through analysis of the curvature functions in the direction of C—C bonds. The obtained values not only demonstrate variations in curvature but also show a correlation with the hybridization of the C atoms involved in the bond.




l

Formation of a di­iron–(μ-η1:η1-CN) com­plex from aceto­nitrile solution

The activation of C—C bonds by transition-metal com­plexes is of continuing inter­est and aceto­nitrile (MeCN) has attracted attention as a cyanide source with com­paratively low toxicity for organic cyanation reactions. A di­iron end-on μ-η1:η1-CN-bridged com­plex was obtained from a crystallization experiment of an open-chain iron–NHC com­plex, namely, μ-cyanido-κ2C:N-bis­{[(aceto­nitrile-κN)[3,3'-bis­(pyridin-2-yl)-1,1'-(methyl­idene)bis­(benzimidazol-2-yl­idene)]iron(II)} tris­(hexa­fluoro­phos­phate), [Fe2(CN)(C2H3N)2(C25H18N6)2](PF6)3. The cyanide appears to originate from the MeCN solvent by C—C bond cleavage or through carbon–hy­dro­gen oxidation.




l

2,4-Di­aryl­pyrroles: synthesis, characterization and crystallographic insights

Three 2,4-di­aryl­pyrroles were synthesized starting from 4-nitro­butano­nes and the crystal structures of two derivatives were analysed. These are 4-(4-meth­oxy­phen­yl)-2-(thio­phen-2-yl)-1H-pyrrole, C15H13NOS, and 3-(4-bromo­phen­yl)-2-nitroso-5-phenyl-1H-pyrrole, C16H11BrN2O. Although pyrroles without sub­stituents at the α-position with respect to the N atom are very air sensitive and tend to polymerize, we succeeded in growing an adequate crystal for X-ray diffraction analysis. Further derivatization using sodium nitrite afforded a nitrosyl pyrrole derivative, which crystallized in the triclinic space group Poverline{1} with Z = 6. Thus, herein we report the first crystal structure of a nitrosyl pyrrole. Inter­estingly, the co-operative hydrogen bonds in this NO-substituted pyrrole lead to a trimeric structure with bifurcated halogen bonds at the ends, forming a two-dimensional (2D) layer with inter­stitial voids having a radius of 5 Å, similar to some reported macrocyclic porphyrins.




l

Crystal structures of two unexpected products of vicinal di­amines left to crystallize in acetone

Herein we report the crystal structures of two ben­zo­di­az­e­pines obtained by reacting N,N'-(4,5-di­amino-1,2-phenyl­ene)bis­(4-methyl­ben­zene­sul­fon­am­ide) (1) or 4,5-(4-methyl­ben­zene­sul­fon­am­ido)­ben­zene-1,2-diaminium dichloride (1·2HCl) with acetone, giving 2,2,4-trimethyl-8,9-bis­(4-methyl­ben­zene­sul­fon­am­ido)-2,3-di­hydro-5H-1,5-ben­zo­di­az­e­pine, C26H30N4O4S2 (2), and 2,2,4-tri­methyl-8,9-bis­(4-methyl­ben­zene­sul­fon­am­ido)-2,3-di­hydro-5H-1,5-ben­zo­di­az­e­pin-1-ium chloride 0.3-hydrate, C26H31N4O4S2+·Cl−·0.3H2O (3). Compounds 2 and 3 were first obtained in attempts to recrystallize 1 and 1·2HCl using acetone as solvent. This solvent reacted with the vicinal di­amines present in the mol­ecular structures, forming a 5H-1,5-ben­zo­di­az­e­pine ring. In the crystal structure of 2, the seven-membered ring of ben­zo­di­az­e­pine adopts a boat-like conformation, while upon protonation, observed in the crystal structure of 3, it adopts an envelope-like conformation. In both crystalline com­pounds, the tosyl­amide N atoms are not in resonance with the arene ring, mainly due to hy­dro­gen bonds and steric hindrance caused by the large vicinal groups in the aromatic ring. At a supra­molecular level, the crystal structure is maintained by a combination of hy­dro­gen bonds and hydro­phobic inter­actions. In 2, amine-to-tosyl N—H⋯O and amide-to-imine N—H⋯N hy­dro­gen bonds can be observed. In contrast, in 3, the chloride counter-ion and water mol­ecule result in most of the hy­dro­gen bonds being of the amide-to-chloride and ammonium-to-chloride N—H⋯Cl types, while the amine inter­acts with the tosyl group, as seen in 2. In conclusion, we report the synthesis of 1, 1·2HCl and 2, as well as their chemical characterization. For 2, two synthetic methods are described, i.e. solvent-mediated crystallization and synthesis via a more efficient and cleaner route as a polycrystalline material. Salt 3 was only obtained as presented, with only a few crystals being formed.




l

Salt forms of amides: protonation of acetanilide

Treating the amide acetanilide (N-phenyl­acetamide, C8H9NO) with aqueous strong acids allowed the structures of five hemi-protonated salt forms of acetanilide to be elucidated. N-(1-Hy­droxy­ethyl­idene)anilinium chloride–N-phenyl­acetamide (1/1), [(C8H9NO)2H][Cl], and the bromide, [(C8H9NO)2H][Br], triiodide, [(C8H9NO)2H][I3], tetra­fluoro­borate, [(C8H9NO)2H][BF4], and di­iodo­bromide hemi(diiodine), [(C8H9NO)2H][I2Br]·0.5I2, analogues all feature centrosymmetric dimeric units linked by O—H⋯O hy­dro­gen bonds that extend into one-dimensional hy­dro­gen-bonded chains through N—H⋯X inter­actions, where X is the halide atom of the anion. Protonation occurs at the amide O atom and results in systematic lengthening of the C=O bond and a corresponding shortening of the C—N bond. The size of these geometric changes is similar to those found for hemi-protonated paracetamol structures, but less than those in fully protonated paracetamol structures. The bond angles of the amide fragments are also found to change on protonation, but these angular changes are also influenced by conformation, namely, whether the amide group is coplanar with the phenyl ring or twisted out of plane.




l

Coordination variety of phenyl­tetra­zolato and di­methyl­amido ligands in dimeric Ti, Zr, and Ta com­plexes

Three structurally diverse 5-phenyl­tetra­zolato (Tz) Ti, Zr, and Ta com­plexes, namely, (C2H8N)[Ti2(C7H5N4)5(C2H6N)4]·1.45C6H6 or (Me2NH2)[Ti2(NMe2)4(2,3-μ-Tz)3(2-η1-Tz)2]·1.45C6H6, (1·1.45C6H6), [Zr2(C7H5N4)6(C2H6N)2(C2H7N)2]·1.12C6H6·0.382CH2Cl2 or [Zr2(Me2NH)2(NMe2)2(2,3-μ-Tz)3(2-η1-Tz)2(1,2-η2-Tz)]·1.12C6H6·0.38CH2Cl2 (2·1.12C6H6·0.38CH2Cl2), and (C2H8N)2[Ta2(C7H5N4)8(C2H6N)2O]·0.25C7H8 or (Me2NH2)2[Ta2(NMe2)2(2,3-μ-Tz)2(2-η1-Tz)6O]·0.25C7H8 (3·0.25C7H8), where TzH is 5-phenyl-1H-tetra­zole, have been synthesized and structurally characterized. All three com­plexes are dinuclear; the Ti center in 1 is six-coordinate, whereas the Zr and Ta atoms in 2 and 3 are seven-coordinate. The coordination environments of the Ti centers in 1 are similar, and so are the ligations of the Ta centers in 3. In contrast, the two Zr centers in 2 bear a different number of ligands, one of which is a bidentate η2-5-phenyl­tetra­zolato ligand that has not been observed previously for d-block elements. The di­methyl­amido ligand, present in the starting materials, remained un­changed, or was converted to di­methyl­amine and di­methyl­ammonium during the synthesis. Di­methyl­amine coordinates as a neutral ligand, whereas di­methyl­ammonium is retained as a hy­dro­gen-bonded entity bridging Tz ligands.




l

Methods in mol­ecular photocrystallography

Over the last three decades, the technology that makes it possible to follow chemical processes in the solid state in real time has grown enormously. These studies have important implications for the design of new functional materials for applications in optoelectronics and sensors. Light–matter inter­actions are of particular importance, and photocrystallography has proved to be an important tool for studying these inter­actions. In this technique, the three-dimensional structures of light-activated mol­ecules, in their excited states, are determined using single-crystal X-ray crystallography. With advances in the design of high-power lasers, pulsed LEDs and time-gated X-ray detectors, the increased availability of synchrotron facilities, and most recently, the development of XFELs, it is now possible to determine the structures of mol­ecules with lifetimes ranging from minutes down to picoseconds, within a single crystal, using the photocrystallographic technique. This review discusses the procedures for conducting successful photocrystallographic studies and outlines the different methodologies that have been developed to study structures with specific lifetime ranges. The com­plexity of the methods required increases considerably as the lifetime of the excited state shortens. The discussion is supported by examples of successful photocrystallographic studies across a range of timescales and emphasises the importance of the use of com­plementary analytical techniques in order to understand the solid-state processes fully.




l

Coordination structure and inter­molecular inter­actions in copper(II) acetate com­plexes with 1,10-phenanthroline and 2,2'-bi­py­ri­dine

The crystal structures of two coordination com­pounds, (acetato-κO)(2,2'-bi­py­ri­dine-κ2N,N')(1,10-phenanthroline-κ2N,N')copper(II) acetate hexa­hydrate, [Cu(C2H3O2)(C10H8N2)(C12H8N2)](C2H3O2)·6H2O or [Cu(bipy)(phen)Ac]Ac·6H2O, and (acetato-κO)bis­(2,2'-bi­py­ri­dine-κ2N,N')copper(II) acetate–acetic acid–water (1/1/3), [Cu(C2H3O2)(C10H8N2)2](C2H3O2)·C2H4O2·3H2O or [Cu(bipy)2Ac]Ac·HAc·3H2O, are reported and com­pared with the previously published structure of [Cu(phen)2Ac]Ac·7H2O (phen is 1,10-phenanthroline, bipy for 2,2'-bi­py­ri­dine, ac is acetate and Hac is acetic acid). The geometry around the metal centre is penta­coordinated, but highly distorted in all three cases. The coordination number and the geometric distortion are both discussed in detail, and all com­plexes belong to the space group Poverline{1}. The analysis of the geometric parameters and the Hirshfeld surface properties dnorm and curvedness provide information about the metal–ligand inter­actions in these com­plexes and allow com­parison with similar systems.




l

Multivalent hy­dro­gen-bonded architectures directed by self-com­plementarity between [Cu(2,2'-bi­imid­az­ole)] and malonate building blocks

The synthesis and structural characterization of four novel supra­molecular hy­dro­gen-bonded arrangements based on self-assembly from mol­ecular `[Cu(2,2'-bi­imid­az­ole)]' modules and malonate anions are pre­sent­ed, namely, tetra­kis­(2,2'-bi­imid­az­ole)di-μ-chlorido-dimal­on­atotricopper(II) penta­hydrate, [Cu3(C3H2O4)2Cl2(C6H6N4)4]·5H2O or [Cu(H2biim)2(μ-Cl)Cu0.5(mal)]2·5H2O, aqua­(2,2'-bi­imid­az­ole)­mal­on­atocopper(II) dihydrate, [Cu(C3H2O4)(C6H6N4)(H2O)]·2H2O or [Cu(H2biim)(mal)(H2O)]·2H2O, bis­[aqua­bis­(2,2'-bi­imid­az­ole)­cop­per(II)] di­mal­on­atodi­perchloratocopper(II) 2.2-hydrate, [Cu(C6H6N4)2(H2O)]2[Cu(C3H2O4)(ClO4)2]·2.2H2O or [Cu(H2biim)2(H2O)]2[Cu(mal)2(ClO4)2]·2.2H2O, and bis­(2,2'-bi­imid­az­ole)­copper(II) bis­[bis­(2,2'-bi­imid­az­ole)(2-carb­oxy­acetato)mal­on­atocopper(II)] tridecahydrate, [Cu(C6H6N4)2][Cu(C3H2O4)(C3H3O4)(C6H6N4)2]·13H2O or [Cu(H2biim)2][Cu(H2biim)2(Hmal)(mal)]2·13H2O. These as­sem­blies are characterized by self-com­plementary donor–acceptor mol­ecular inter­actions, demonstrating a recurrent and distinctive pattern of hy­dro­gen-bonding preferences among the carboxyl­ate, carb­oxy­lic acid and N—H groups of the coordinated 2,2'-bi­imid­az­ole and malonate ligands. Additionally, co­or­din­ation of the carboxyl­ate group with the metallic centre helps sustain re­mark­able supra­molecular assemblies, such as layers, helices, double helix columns or 3D channeled architectures, including mixed-metal com­plexes, into a single structure.




l

3D electron diffraction studies of synthetic rhabdophane (DyPO4·nH2O)

In this study, we report the results of continuous rotation electron diffraction studies of single DyPO4·nH2O (rhabdophane) nanocrystals. The diffraction patterns can be fit to a trigonal lattice (P3121) with lattice parameters a = 7.019 (5) and c = 6.417 (5) Å. However, there is also a set of diffuse background scattering features present that are associated with a disordered superstructure that is double these lattice parameters and fits with an arrangement of water mol­ecules present in the structure pore. Pair distribution function (PDF) maps based on the diffuse background allowed the extent of the water correlation to be estimated, with 2–3 nm correlation along the c axis and ∼5 nm along the a/b axis.




l

Revisiting a natural wine salt: calcium (2R,3R)-tar­trate tetra­hydrate

The crystal structure of the salt calcium (2R,3R)-tar­trate tetra­hydrate {sys­tem­atic name: poly[[di­aqua­[μ4-(2R,3R)-2,3-di­hydroxy­butane­dioato]calcium(II)] di­hydrate]}, {[Ca(C4H8O8)(H2O)2]·2H2O}n, is reported. The absolute configuration of the crystal was established unambiguously using anomalous dispersion effects in the diffraction patterns. High-quality data also allowed the location and free refinement of all the H atoms, and therefore to a careful analysis of the hy­dro­gen-bond inter­actions.




l

On the importance of crystal structures for organic thin film transistors

Historically, knowledge of the mol­ecular packing within the crystal structures of organic semi­con­duc­tors has been instrumental in understanding their solid-state electronic properties. Nowadays, crystal structures are thus becoming increasingly important for enabling engineering properties, understanding poly­mor­phism in bulk and in thin films, exploring dynamics and elucidating phase-transition mech­a­nisms. This review article introduces the most salient and recent results of the field.




l

The challenges of growing great crystals – or at least good enough ones!




l

Mol­ecular and crystal structures of six poly(arylsulfin­yl)- and poly(aryl­sulfan­yl)fer­ro­cenes

Starting from (p-tolyl­sulfin­yl)fer­ro­cene (1), a mixture of the complete series [CpFe{C5H5–n(SOTol-p)n}] (n = 2–4) (2–4) in all regioisomers was obtained. After chromatographic separation, crystals of 1,2-bis­[(4-methyl­benzene)­sulfin­yl]fer­ro­cene, 2a, and 1,3-bis­[(4-methyl­benzene)­sulfin­yl]fer­ro­cene, 2b, both [Fe(C5H5)(C19H17O2S2)], as well as of 1,2,3-tris­[(4-methyl­benzene)­sulfin­yl]fer­ro­cene, [Fe(C5H5)(C26H23O3S3)], 3a, and 1,2,3,4-tetra­kis­[(4-methyl­benzene)­sul­fin­yl]fer­ro­cene ethyl acetate 0.75-solvate, [Fe(C5H5)(C33H29O4S4)]·0.75C4H8O2, 4, could be isolated. Their mol­ecular and crystal structures are compared with each other and also with the so far un­reported structures of related 1,2-bis­(phenyl­sulfan­yl)fer­ro­cene, [Fe(C5H5)(C17H13S2)], 5, and 1,2,3,4-tetra­kis­(phenyl­sulfan­yl)fer­ro­cene, [Fe(C5H5)(C29H21S4)], 6. In all the sulfinyl structures, the O atoms of the S=O groups are in equatorial positions, except for that in tetrasubstituted 4. All the arene rings of these com­pounds (except for one ring in 4) are in axial positions directed away from the Fe atom, mostly in a near perpendicular orientation with respect to the plane of the cyclo­penta­di­en­yl ring. The main inter­molecular inter­actions in the crystals are C—H⋯H—C, C—H⋯π and C—H⋯O, while C—H⋯S inter­actions are much less important, except for tetra­sul­fan­yl com­pound 6. π–π inter­actions (intra­molecular) are only important in com­pound 3a. Hirshfeld analysis shows that dispersion terms are dominant for the inter­action energies of all six com­pounds. In general, the calculated total inter­action energies increase with increasing number of substituents and are higher for the sulfinyl than for the sul­fan­yl groups.




l

Introducing the Best practice in crystallography series

 




l

Photocrystallography – common or exclusive?

 




l

Crystal clear: the impact of crystal structure in the development of high-performance organic semiconductors

 




l

Modes and model building in SHELXE

Density modification is a standard step to provide a route for routine structure solution by any experimental phasing method, with single-wavelength or multi-wavelength anomalous diffraction being the most popular methods, as well as to extend fragments or incomplete models into a full solution. The effect of density modification on the starting maps from either source is illustrated in the case of SHELXE. The different modes in which the program can run are reviewed; these include less well known uses such as reading external phase values and weights or phase distributions encoded in Hendrickson–Lattman coefficients. Typically in SHELXE, initial phases are calculated from experimental data, from a partial model or map, or from a combination of both sources. The initial phase set is improved and extended by density modification and, if the resolution of the data and the type of structure permits, polyalanine tracing. As a feature to systematically eliminate model bias from phases derived from predicted models, the trace can be set to exclude the area occupied by the starting model. The trace now includes an extension into the gamma position or hydrophobic and aromatic side chains if a sequence is provided, which is performed in every tracing cycle. Once a correlation coefficient of over 30% between the structure factors calculated from such a trace and the native data indicates that the structure has been solved, the sequence is docked in all model-building cycles and side chains are fitted if the map supports it. The extensions to the tracing algorithm brought in to provide a complete model are discussed. The improvement in phasing performance is assessed using a set of tests.




l

The TR-icOS setup at the ESRF: time-resolved microsecond UV–Vis absorption spectroscopy on protein crystals

The technique of time-resolved macromolecular crystallography (TR-MX) has recently been rejuvenated at synchrotrons, resulting in the design of dedicated beamlines. Using pump–probe schemes, this should make the mechanistic study of photoactive proteins and other suitable systems possible with time resolutions down to microseconds. In order to identify relevant time delays, time-resolved spectroscopic experiments directly performed on protein crystals are often desirable. To this end, an instrument has been built at the icOS Lab (in crystallo Optical Spectroscopy Laboratory) at the European Synchrotron Radiation Facility using reflective focusing objectives with a tuneable nanosecond laser as a pump and a microsecond xenon flash lamp as a probe, called the TR-icOS (time-resolved icOS) setup. Using this instrument, pump–probe spectra can rapidly be recorded from single crystals with time delays ranging from a few microseconds to seconds and beyond. This can be repeated at various laser pulse energies to track the potential presence of artefacts arising from two-photon absorption, which amounts to a power titration of a photoreaction. This approach has been applied to monitor the rise and decay of the M state in the photocycle of crystallized bacteriorhodopsin and showed that the photocycle is increasingly altered with laser pulses of peak fluence greater than 100 mJ cm−2, providing experimental laser and delay parameters for a successful TR-MX experiment.